{"title":"Bioinspired Lipid Nanocarriers for RNA Delivery","authors":"Alex Golubovic, Shannon Tsai and Bowen Li*, ","doi":"10.1021/acsbiomedchemau.2c00073","DOIUrl":null,"url":null,"abstract":"<p >RNA therapy is a disruptive technology comprising a rapidly expanding category of drugs. Further translation of RNA therapies to the clinic will improve the treatment of many diseases and help enable personalized medicine. However, in vivo delivery of RNA remains challenging due to the lack of appropriate delivery tools. Current state-of-the-art carriers such as ionizable lipid nanoparticles still face significant challenges, including frequent localization to clearance-associated organs and limited (1–2%) endosomal escape. Thus, delivery vehicles must be improved to further unlock the full potential of RNA therapeutics. An emerging strategy is to modify existing or new lipid nanocarriers by incorporating bioinspired design principles. This method generally aims to improve tissue targeting, cellular uptake, and endosomal escape, addressing some of the critical issues facing the field. In this review, we introduce the different strategies for creating bioinspired lipid-based RNA carriers and discuss the potential implications of each strategy based on reported findings. These strategies include incorporating naturally derived lipids into existing nanocarriers and mimicking bioderived molecules, viruses, and exosomes. We evaluate each strategy based on the critical factors required for delivery vehicles to succeed. Finally, we point to areas of research that should be furthered to enable the more successful rational design of lipid nanocarriers for RNA delivery.</p>","PeriodicalId":29802,"journal":{"name":"ACS Bio & Med Chem Au","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c0/a3/bg2c00073.PMC10125326.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Bio & Med Chem Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsbiomedchemau.2c00073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
RNA therapy is a disruptive technology comprising a rapidly expanding category of drugs. Further translation of RNA therapies to the clinic will improve the treatment of many diseases and help enable personalized medicine. However, in vivo delivery of RNA remains challenging due to the lack of appropriate delivery tools. Current state-of-the-art carriers such as ionizable lipid nanoparticles still face significant challenges, including frequent localization to clearance-associated organs and limited (1–2%) endosomal escape. Thus, delivery vehicles must be improved to further unlock the full potential of RNA therapeutics. An emerging strategy is to modify existing or new lipid nanocarriers by incorporating bioinspired design principles. This method generally aims to improve tissue targeting, cellular uptake, and endosomal escape, addressing some of the critical issues facing the field. In this review, we introduce the different strategies for creating bioinspired lipid-based RNA carriers and discuss the potential implications of each strategy based on reported findings. These strategies include incorporating naturally derived lipids into existing nanocarriers and mimicking bioderived molecules, viruses, and exosomes. We evaluate each strategy based on the critical factors required for delivery vehicles to succeed. Finally, we point to areas of research that should be furthered to enable the more successful rational design of lipid nanocarriers for RNA delivery.
期刊介绍:
ACS Bio & Med Chem Au is a broad scope open access journal which publishes short letters comprehensive articles reviews and perspectives in all aspects of biological and medicinal chemistry. Studies providing fundamental insights or describing novel syntheses as well as clinical or other applications-based work are welcomed.This broad scope includes experimental and theoretical studies on the chemical physical mechanistic and/or structural basis of biological or cell function in all domains of life. It encompasses the fields of chemical biology synthetic biology disease biology cell biology agriculture and food natural products research nucleic acid biology neuroscience structural biology and biophysics.The journal publishes studies that pertain to a broad range of medicinal chemistry including compound design and optimization biological evaluation molecular mechanistic understanding of drug delivery and drug delivery systems imaging agents and pharmacology and translational science of both small and large bioactive molecules. Novel computational cheminformatics and structural studies for the identification (or structure-activity relationship analysis) of bioactive molecules ligands and their targets are also welcome. The journal will consider computational studies applying established computational methods but only in combination with novel and original experimental data (e.g. in cases where new compounds have been designed and tested).Also included in the scope of the journal are articles relating to infectious diseases research on pathogens host-pathogen interactions therapeutics diagnostics vaccines drug-delivery systems and other biomedical technology development pertaining to infectious diseases.