Jiahui Xu, Yiling Dong, Jiang Yang, Ziyin Jiang, Longcheng Tang, Xiangrong Chen, Kun Cao
{"title":"The Soft Ray-Inspired Robots Actuated by Solid-Liquid Interpenetrating Silicone-Based Dielectric Elastomer Actuator.","authors":"Jiahui Xu, Yiling Dong, Jiang Yang, Ziyin Jiang, Longcheng Tang, Xiangrong Chen, Kun Cao","doi":"10.1089/soro.2022.0024","DOIUrl":null,"url":null,"abstract":"<p><p>Dielectric elastomer actuators (DEAs) are widely used in robotics and artificial muscles because of their large energy densities and short response time. In this study, we developed two types of soft ray-inspired robots using solid-liquid interpenetrating silicone-based DEAs, named SIS DEAs. The optimized SIS DEA had an actuation strain of 79.8% at 20.43 kV/mm in a freestanding state, which was used as the muscle of the ray robot. To imitate the swimming behavior of the ray, the effect of the driving frequency on the velocity of the ray robot was explored. The ray robot achieved a maximum swimming rate of 5.7 mm/s when the driving frequency was ∼0.6 Hz. In addition, the steady-state and the transient simulation were carried out to reveal the mechanism of the ray robot's electro-swimming. The results revealed that the actuating deformation of the SIS DEAs caused the electro-deformation of the ray robot, and the periodical electro-deformation generated the high-speed vortex beneath the robot to push the ray robot forward. The high actuation strain in the freestanding state and the shape customizability of the SIS DEAs made it an ideal alternative to muscles for various soft robots.</p>","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":"10 2","pages":"354-364"},"PeriodicalIF":6.4000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/soro.2022.0024","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 5
Abstract
Dielectric elastomer actuators (DEAs) are widely used in robotics and artificial muscles because of their large energy densities and short response time. In this study, we developed two types of soft ray-inspired robots using solid-liquid interpenetrating silicone-based DEAs, named SIS DEAs. The optimized SIS DEA had an actuation strain of 79.8% at 20.43 kV/mm in a freestanding state, which was used as the muscle of the ray robot. To imitate the swimming behavior of the ray, the effect of the driving frequency on the velocity of the ray robot was explored. The ray robot achieved a maximum swimming rate of 5.7 mm/s when the driving frequency was ∼0.6 Hz. In addition, the steady-state and the transient simulation were carried out to reveal the mechanism of the ray robot's electro-swimming. The results revealed that the actuating deformation of the SIS DEAs caused the electro-deformation of the ray robot, and the periodical electro-deformation generated the high-speed vortex beneath the robot to push the ray robot forward. The high actuation strain in the freestanding state and the shape customizability of the SIS DEAs made it an ideal alternative to muscles for various soft robots.
期刊介绍:
Soft Robotics (SoRo) stands as a premier robotics journal, showcasing top-tier, peer-reviewed research on the forefront of soft and deformable robotics. Encompassing flexible electronics, materials science, computer science, and biomechanics, it pioneers breakthroughs in robotic technology capable of safe interaction with living systems and navigating complex environments, natural or human-made.
With a multidisciplinary approach, SoRo integrates advancements in biomedical engineering, biomechanics, mathematical modeling, biopolymer chemistry, computer science, and tissue engineering, offering comprehensive insights into constructing adaptable devices that can undergo significant changes in shape and size. This transformative technology finds critical applications in surgery, assistive healthcare devices, emergency search and rescue, space instrument repair, mine detection, and beyond.