Xiaofang Yang, Ting Ye, Li Rong, Hong Peng, Jin Tong, Xiao Xiao, Xiaoqiang Wan, Jinjun Guo
{"title":"GATA4 Forms a Positive Feedback Loop with CDX2 to Transactivate MUC2 in Bile Acids-Induced Gastric Intestinal Metaplasia.","authors":"Xiaofang Yang, Ting Ye, Li Rong, Hong Peng, Jin Tong, Xiao Xiao, Xiaoqiang Wan, Jinjun Guo","doi":"10.5009/gnl220394","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aims: </strong>Gastric intestinal metaplasia (GIM), a common precancerous lesion of gastric cancer, can be caused by bile acid reflux. GATA binding protein 4 (GATA4) is an intestinal transcription factor involved in the progression of gastric cancer. However, the expression and regulation of GATA4 in GIM has not been clarified.</p><p><strong>Methods: </strong>The expression of GATA4 in bile acid-induced cell models and human specimens was examined. The transcriptional regulation of GATA4 was investigated by chromatin immunoprecipitation and luciferase reporter gene analysis. An animal model of duodenogastric reflux was used to confirm the regulation of GATA4 and its target genes by bile acids.</p><p><strong>Results: </strong>GATA4 expression was elevated in bile acid-induced GIM and human specimens. GATA4 bound to the promoter of mucin 2 (MUC2) and stimulate its transcription. GATA4 and MUC2 expression was positively correlated in GIM tissues. Nuclear transcription factor-κB activation was required for the upregulation of GATA4 and MUC2 in bile acid-induced GIM cell models. GATA4 and caudal-related homeobox 2 (CDX2) reciprocally transactivated each other to drive the transcription of MUC2. In chenodeoxycholic acid-treated mice, MUC2, CDX2, GATA4, p50, and p65 expression levels were increased in the gastric mucosa.</p><p><strong>Conclusions: </strong>GATA4 is upregulated and can form a positive feedback loop with CDX2 to transactivate MUC2 in GIM. NF-κB signaling is involved in the upregulation of GATA4 by chenodeoxycholic acid.</p>","PeriodicalId":12885,"journal":{"name":"Gut and Liver","volume":" ","pages":"414-425"},"PeriodicalIF":3.4000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11096910/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gut and Liver","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5009/gnl220394","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background/aims: Gastric intestinal metaplasia (GIM), a common precancerous lesion of gastric cancer, can be caused by bile acid reflux. GATA binding protein 4 (GATA4) is an intestinal transcription factor involved in the progression of gastric cancer. However, the expression and regulation of GATA4 in GIM has not been clarified.
Methods: The expression of GATA4 in bile acid-induced cell models and human specimens was examined. The transcriptional regulation of GATA4 was investigated by chromatin immunoprecipitation and luciferase reporter gene analysis. An animal model of duodenogastric reflux was used to confirm the regulation of GATA4 and its target genes by bile acids.
Results: GATA4 expression was elevated in bile acid-induced GIM and human specimens. GATA4 bound to the promoter of mucin 2 (MUC2) and stimulate its transcription. GATA4 and MUC2 expression was positively correlated in GIM tissues. Nuclear transcription factor-κB activation was required for the upregulation of GATA4 and MUC2 in bile acid-induced GIM cell models. GATA4 and caudal-related homeobox 2 (CDX2) reciprocally transactivated each other to drive the transcription of MUC2. In chenodeoxycholic acid-treated mice, MUC2, CDX2, GATA4, p50, and p65 expression levels were increased in the gastric mucosa.
Conclusions: GATA4 is upregulated and can form a positive feedback loop with CDX2 to transactivate MUC2 in GIM. NF-κB signaling is involved in the upregulation of GATA4 by chenodeoxycholic acid.
期刊介绍:
Gut and Liver is an international journal of gastroenterology, focusing on the gastrointestinal tract, liver, biliary tree, pancreas, motility, and neurogastroenterology. Gut and Liver delivers up-to-date, authoritative papers on both clinical and research-based topics in gastroenterology. The Journal publishes original articles, case reports, brief communications, letters to the editor and invited review articles in the field of gastroenterology. The Journal is operated by internationally renowned editorial boards and designed to provide a global opportunity to promote academic developments in the field of gastroenterology and hepatology.
Gut and Liver is jointly owned and operated by 8 affiliated societies in the field of gastroenterology, namely: the Korean Society of Gastroenterology, the Korean Society of Gastrointestinal Endoscopy, the Korean Society of Neurogastroenterology and Motility, the Korean College of Helicobacter and Upper Gastrointestinal Research, the Korean Association for the Study of Intestinal Diseases, the Korean Association for the Study of the Liver, the Korean Pancreatobiliary Association, and the Korean Society of Gastrointestinal Cancer.