Emma Farago;Dawn MacIsaac;Michelle Suk;Adrian D. C. Chan
{"title":"A Review of Techniques for Surface Electromyography Signal Quality Analysis","authors":"Emma Farago;Dawn MacIsaac;Michelle Suk;Adrian D. C. Chan","doi":"10.1109/RBME.2022.3164797","DOIUrl":null,"url":null,"abstract":"Electromyography (EMG) signals are instrumental in a variety of applications including prosthetic control, muscle health assessment, rehabilitation, and workplace monitoring. Signal contaminants including noise, interference, and artifacts can degrade the quality of the EMG signal, leading to misinterpretation; therefore it is important to ensure that collected EMG signals are of sufficient quality prior to further analysis. A literature search was conducted to identify current approaches for detecting, identifying, and quantifying contaminants within surface EMG signals. We identified two main strategies: 1) bottom-up approaches for identifying specific and well-characterized contaminants and 2) top-down approaches for detecting anomalous EMG signals or outlier channels in high-density EMG arrays. The best type(s) of approach are dependent on the circumstances of data collection including the environment, the susceptibility of the application to contaminants, and the resilience of the application to contaminants. Further research is needed for assessing EMG with multiple simultaneous contaminants, identifying ground-truths for clean EMG data, and developing user-friendly and autonomous methods for EMG signal quality analysis.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"16 ","pages":"472-486"},"PeriodicalIF":17.2000,"publicationDate":"2022-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Reviews in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/9749945/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 12
Abstract
Electromyography (EMG) signals are instrumental in a variety of applications including prosthetic control, muscle health assessment, rehabilitation, and workplace monitoring. Signal contaminants including noise, interference, and artifacts can degrade the quality of the EMG signal, leading to misinterpretation; therefore it is important to ensure that collected EMG signals are of sufficient quality prior to further analysis. A literature search was conducted to identify current approaches for detecting, identifying, and quantifying contaminants within surface EMG signals. We identified two main strategies: 1) bottom-up approaches for identifying specific and well-characterized contaminants and 2) top-down approaches for detecting anomalous EMG signals or outlier channels in high-density EMG arrays. The best type(s) of approach are dependent on the circumstances of data collection including the environment, the susceptibility of the application to contaminants, and the resilience of the application to contaminants. Further research is needed for assessing EMG with multiple simultaneous contaminants, identifying ground-truths for clean EMG data, and developing user-friendly and autonomous methods for EMG signal quality analysis.
期刊介绍:
IEEE Reviews in Biomedical Engineering (RBME) serves as a platform to review the state-of-the-art and trends in the interdisciplinary field of biomedical engineering, which encompasses engineering, life sciences, and medicine. The journal aims to consolidate research and reviews for members of all IEEE societies interested in biomedical engineering. Recognizing the demand for comprehensive reviews among authors of various IEEE journals, RBME addresses this need by receiving, reviewing, and publishing scholarly works under one umbrella. It covers a broad spectrum, from historical to modern developments in biomedical engineering and the integration of technologies from various IEEE societies into the life sciences and medicine.