Artificial intelligence–enabled mobile electrocardiograms for event prediction in paroxysmal atrial fibrillation

IF 2.6 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS Cardiovascular digital health journal Pub Date : 2023-02-01 DOI:10.1016/j.cvdhj.2023.01.002
Ananditha Raghunath MS , Dan D. Nguyen MD , Matthew Schram PhD , David Albert MD , Shyamnath Gollakota PhD , Linda Shapiro PhD , Arun R. Sridhar MBBS, MPH, FHRS
{"title":"Artificial intelligence–enabled mobile electrocardiograms for event prediction in paroxysmal atrial fibrillation","authors":"Ananditha Raghunath MS ,&nbsp;Dan D. Nguyen MD ,&nbsp;Matthew Schram PhD ,&nbsp;David Albert MD ,&nbsp;Shyamnath Gollakota PhD ,&nbsp;Linda Shapiro PhD ,&nbsp;Arun R. Sridhar MBBS, MPH, FHRS","doi":"10.1016/j.cvdhj.2023.01.002","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Paroxysmal atrial fibrillation (AF) often eludes early diagnosis, resulting in significant morbidity and mortality. Artificial intelligence (AI) has been used to predict AF from sinus rhythm electrocardiograms (ECGs), but AF prediction using sinus rhythm mobile electrocardiograms (mECG) remains unexplored.</p></div><div><h3>Objective</h3><p>The purpose of this study was to investigate the utility of AI to predict AF events prospectively and retrospectively using sinus rhythm mECG data.</p></div><div><h3>Methods</h3><p>We trained a neural network to predict AF events from sinus rhythm mECGs obtained from users of the Alivecor KardiaMobile 6L device. We tested our model on sinus rhythm mECGs within ±0–2 days, ±3–7 days, and ±8–30 days from AF events to determine the optimal screening window. Finally, we tested our model on mECGs from before an AF event to determine whether AF can be predicted prospectively.</p></div><div><h3>Results</h3><p>We included 73,861 users with 267,614 mECGs (mean age 58.14 years; 35% women). Users with paroxysmal AF contributed 60.15% of mECGs. Model performance on the test set comprising control and study samples across all windows of interest showed an area under the curve (AUC) score of 0.760 (95% confidence interval [CI] 0.759–0.760), sensitivity of 0.703 (95% CI 0.700–0.705), specificity of 0.684 (95% CI 0.678–0.685), and accuracy of 69.4% (95% CI 0.692–0.700). Model performance was better on ±0–2 day samples (sensitivity 0.711; 95% CI 0.709–0.713) and worse on the ±8–30 day window (sensitivity 0.688; 95% CI 0.685–0.690), with performance on the ±3–7 day window falling in between (sensitivity 0.708; 95% CI 0.704–0.710).</p></div><div><h3>Conclusion</h3><p>Neural networks can predict AF using a widely scalable and cost-effective mobile technology prospectively and retrospectively.</p></div>","PeriodicalId":72527,"journal":{"name":"Cardiovascular digital health journal","volume":"4 1","pages":"Pages 21-28"},"PeriodicalIF":2.6000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5c/ba/main.PMC9971999.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular digital health journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666693623000026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

Background

Paroxysmal atrial fibrillation (AF) often eludes early diagnosis, resulting in significant morbidity and mortality. Artificial intelligence (AI) has been used to predict AF from sinus rhythm electrocardiograms (ECGs), but AF prediction using sinus rhythm mobile electrocardiograms (mECG) remains unexplored.

Objective

The purpose of this study was to investigate the utility of AI to predict AF events prospectively and retrospectively using sinus rhythm mECG data.

Methods

We trained a neural network to predict AF events from sinus rhythm mECGs obtained from users of the Alivecor KardiaMobile 6L device. We tested our model on sinus rhythm mECGs within ±0–2 days, ±3–7 days, and ±8–30 days from AF events to determine the optimal screening window. Finally, we tested our model on mECGs from before an AF event to determine whether AF can be predicted prospectively.

Results

We included 73,861 users with 267,614 mECGs (mean age 58.14 years; 35% women). Users with paroxysmal AF contributed 60.15% of mECGs. Model performance on the test set comprising control and study samples across all windows of interest showed an area under the curve (AUC) score of 0.760 (95% confidence interval [CI] 0.759–0.760), sensitivity of 0.703 (95% CI 0.700–0.705), specificity of 0.684 (95% CI 0.678–0.685), and accuracy of 69.4% (95% CI 0.692–0.700). Model performance was better on ±0–2 day samples (sensitivity 0.711; 95% CI 0.709–0.713) and worse on the ±8–30 day window (sensitivity 0.688; 95% CI 0.685–0.690), with performance on the ±3–7 day window falling in between (sensitivity 0.708; 95% CI 0.704–0.710).

Conclusion

Neural networks can predict AF using a widely scalable and cost-effective mobile technology prospectively and retrospectively.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于阵发性心房颤动事件预测的人工智能移动心电图
背景阵发性心房颤动(AF)往往无法早期诊断,导致严重的发病率和死亡率。人工智能(AI)已被用于根据窦性心律心电图(ECG)预测房颤,但使用窦性心律移动心电图(mECG)进行房颤预测仍有待探索。目的本研究的目的是利用窦性心律mECG数据,前瞻性和回顾性地研究人工智能在预测房颤事件中的作用。方法我们训练了一个神经网络,从Alivecor KardiaMobile 6L设备用户获得的窦性心律心电图中预测AF事件。我们在房颤事件发生后的±0-2天、±3-7天和±8-30天内对窦性心律心电图进行了测试,以确定最佳筛查窗口。最后,我们在房颤事件发生前的心电图上测试了我们的模型,以确定房颤是否可以预测。结果我们纳入了73861名用户,共267614 mECG(平均年龄58.14岁;35%为女性)。阵发性房颤的使用者贡献了60.15%的mECG。包括对照和研究样本的测试集在所有感兴趣窗口的模型性能显示,曲线下面积(AUC)得分为0.760(95%置信区间[CI]0.759–0.760),敏感性为0.703(95%CI 0.700–0.705),特异性为0.684(95%CI 0.678–0.685),准确率为69.4%(95%CI 0.692–0.700)。模型性能在±0–2天的样本上更好(灵敏度0.711;95%CI 0.709–0.713),在±8–30天的窗口期更差(灵敏度0.688;95%CI 0.685–0.690),±3-7天窗口期的性能介于两者之间(灵敏度0.708;95%置信区间0.704–0.710)。结论神经网络可以使用一种可广泛扩展且具有成本效益的移动技术前瞻性和回顾性地预测房颤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cardiovascular digital health journal
Cardiovascular digital health journal Cardiology and Cardiovascular Medicine
CiteScore
4.20
自引率
0.00%
发文量
0
审稿时长
58 days
期刊最新文献
Determinants of global cardiac implantable electrical device remote monitoring utilization – Results from an international survey Cellular-Enabled Remote Patient Monitoring for Pregnancies Complicated by Hypertension Point-of-care testing preferences 2020–2022: Trends over the years Feasibility of remote monitoring for fatal coronary heart disease using Apple Watch ECGs Artificial intelligence–based screening for cardiomyopathy in an obstetric population: A pilot study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1