Kacie Dunham, Alisa Zoltowski, Jacob I Feldman, Samona Davis, Baxter Rogers, Michelle D Failla, Mark T Wallace, Carissa J Cascio, Tiffany G Woynaroski
{"title":"Neural Correlates of Audiovisual Speech Processing in Autistic and Non-Autistic Youth.","authors":"Kacie Dunham, Alisa Zoltowski, Jacob I Feldman, Samona Davis, Baxter Rogers, Michelle D Failla, Mark T Wallace, Carissa J Cascio, Tiffany G Woynaroski","doi":"10.1163/22134808-bja10093","DOIUrl":null,"url":null,"abstract":"<p><p>Autistic youth demonstrate differences in processing multisensory information, particularly in temporal processing of multisensory speech. Extensive research has identified several key brain regions for multisensory speech processing in non-autistic adults, including the superior temporal sulcus (STS) and insula, but it is unclear to what extent these regions are involved in temporal processing of multisensory speech in autistic youth. As a first step in exploring the neural substrates of multisensory temporal processing in this clinical population, we employed functional magnetic resonance imaging (fMRI) with a simultaneity-judgment audiovisual speech task. Eighteen autistic youth and a comparison group of 20 non-autistic youth matched on chronological age, biological sex, and gender participated. Results extend prior findings from studies of non-autistic adults, with non-autistic youth demonstrating responses in several similar regions as previously implicated in adult temporal processing of multisensory speech. Autistic youth demonstrated responses in fewer of the multisensory regions identified in adult studies; responses were limited to visual and motor cortices. Group responses in the middle temporal gyrus significantly interacted with age; younger autistic individuals showed reduced MTG responses whereas older individuals showed comparable MTG responses relative to non-autistic controls. Across groups, responses in the precuneus covaried with task accuracy, and anterior temporal and insula responses covaried with nonverbal IQ. These preliminary findings suggest possible differences in neural mechanisms of audiovisual processing in autistic youth while highlighting the need to consider participant characteristics in future, larger-scale studies exploring the neural basis of multisensory function in autism.</p>","PeriodicalId":51298,"journal":{"name":"Multisensory Research","volume":"36 3","pages":"263-288"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10121891/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multisensory Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1163/22134808-bja10093","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Autistic youth demonstrate differences in processing multisensory information, particularly in temporal processing of multisensory speech. Extensive research has identified several key brain regions for multisensory speech processing in non-autistic adults, including the superior temporal sulcus (STS) and insula, but it is unclear to what extent these regions are involved in temporal processing of multisensory speech in autistic youth. As a first step in exploring the neural substrates of multisensory temporal processing in this clinical population, we employed functional magnetic resonance imaging (fMRI) with a simultaneity-judgment audiovisual speech task. Eighteen autistic youth and a comparison group of 20 non-autistic youth matched on chronological age, biological sex, and gender participated. Results extend prior findings from studies of non-autistic adults, with non-autistic youth demonstrating responses in several similar regions as previously implicated in adult temporal processing of multisensory speech. Autistic youth demonstrated responses in fewer of the multisensory regions identified in adult studies; responses were limited to visual and motor cortices. Group responses in the middle temporal gyrus significantly interacted with age; younger autistic individuals showed reduced MTG responses whereas older individuals showed comparable MTG responses relative to non-autistic controls. Across groups, responses in the precuneus covaried with task accuracy, and anterior temporal and insula responses covaried with nonverbal IQ. These preliminary findings suggest possible differences in neural mechanisms of audiovisual processing in autistic youth while highlighting the need to consider participant characteristics in future, larger-scale studies exploring the neural basis of multisensory function in autism.
期刊介绍:
Multisensory Research is an interdisciplinary archival journal covering all aspects of multisensory processing including the control of action, cognition and attention. Research using any approach to increase our understanding of multisensory perceptual, behavioural, neural and computational mechanisms is encouraged. Empirical, neurophysiological, psychophysical, brain imaging, clinical, developmental, mathematical and computational analyses are welcome. Research will also be considered covering multisensory applications such as sensory substitution, crossmodal methods for delivering sensory information or multisensory approaches to robotics and engineering. Short communications and technical notes that draw attention to new developments will be included, as will reviews and commentaries on current issues. Special issues dealing with specific topics will be announced from time to time. Multisensory Research is a continuation of Seeing and Perceiving, and of Spatial Vision.