Puromycin-induced kidney injury and subsequent regeneration in adult zebrafish.

IF 2.5 2区 生物学 Q3 CELL BIOLOGY Animal Cells and Systems Pub Date : 2023-01-01 DOI:10.1080/19768354.2023.2203211
Soonil Koun, Hye-Jin Park, Su-Min Jung, Jin Joo Cha, Dae Ryong Cha, Young Sun Kang
{"title":"Puromycin-induced kidney injury and subsequent regeneration in adult zebrafish.","authors":"Soonil Koun,&nbsp;Hye-Jin Park,&nbsp;Su-Min Jung,&nbsp;Jin Joo Cha,&nbsp;Dae Ryong Cha,&nbsp;Young Sun Kang","doi":"10.1080/19768354.2023.2203211","DOIUrl":null,"url":null,"abstract":"<p><p>Puromycin treatment can cause glomerular injury to the kidney, leading to proteinuria. However, the pathogenesis of acute kidney injury and subsequent regeneration after puromycin administration in animal models remain unclear. In this work, we examined the characteristics of kidney injury and subsequent regeneration following puromycin treatment in adult zebrafish. We intraperitoneally injected 100 μg of puromycin into zebrafish; sacrificed them at 1, 3, 5, 7, or 14 days post-injection (dpi); and examined the morphological, functional, and molecular changes in the kidney. Puromycin-treated zebrafish presented more rapid clearance of rhodamine dextran than control animals. Morphological changes were observed immediately after the puromycin injection (1-7 dpi) and had recovered by 14 dpi. The mRNA production of <i>lhx1a</i>, a renal progenitor marker, increased during recovery from kidney injury. Levels of NFκB, TNFα, Nampt, and p-ERK increased significantly during nephron injury and regeneration, and Sirt1, FOXO1, pax2, and wt1b showed an increasing tendency. However, TGF-β1 and smad5 production did not show any changes after puromycin treatment. This study provides evidence that puromycin-induced injury in adult zebrafish kidneys is a potential tool for evaluating the mechanism of nephron injury and subsequent regeneration.</p>","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":"27 1","pages":"112-119"},"PeriodicalIF":2.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7c/17/TACS_27_2203211.PMC10120544.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Cells and Systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19768354.2023.2203211","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Puromycin treatment can cause glomerular injury to the kidney, leading to proteinuria. However, the pathogenesis of acute kidney injury and subsequent regeneration after puromycin administration in animal models remain unclear. In this work, we examined the characteristics of kidney injury and subsequent regeneration following puromycin treatment in adult zebrafish. We intraperitoneally injected 100 μg of puromycin into zebrafish; sacrificed them at 1, 3, 5, 7, or 14 days post-injection (dpi); and examined the morphological, functional, and molecular changes in the kidney. Puromycin-treated zebrafish presented more rapid clearance of rhodamine dextran than control animals. Morphological changes were observed immediately after the puromycin injection (1-7 dpi) and had recovered by 14 dpi. The mRNA production of lhx1a, a renal progenitor marker, increased during recovery from kidney injury. Levels of NFκB, TNFα, Nampt, and p-ERK increased significantly during nephron injury and regeneration, and Sirt1, FOXO1, pax2, and wt1b showed an increasing tendency. However, TGF-β1 and smad5 production did not show any changes after puromycin treatment. This study provides evidence that puromycin-induced injury in adult zebrafish kidneys is a potential tool for evaluating the mechanism of nephron injury and subsequent regeneration.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
嘌呤霉素诱导的成年斑马鱼肾损伤和随后的再生。
嘌呤霉素治疗可引起肾小球损伤,导致蛋白尿。然而,在动物模型中,急性肾损伤的发病机制和嘌呤霉素给药后的肾再生尚不清楚。在这项工作中,我们研究了成年斑马鱼在嘌呤霉素治疗后肾损伤和随后再生的特征。斑马鱼腹腔注射100 μg嘌呤霉素;分别于注射后1、3、5、7、14天(dpi)处死;并检查了肾脏的形态,功能和分子变化。purmycin处理的斑马鱼对罗丹明右旋糖酐的清除速度比对照动物快。注射1-7 dpi后立即观察到形态学变化,14 dpi后恢复。肾祖细胞标志物lhx1a的mRNA表达量在肾损伤恢复过程中增加。在肾细胞损伤和再生过程中,nf - κ b、tnf - α、Nampt、p-ERK水平显著升高,Sirt1、FOXO1、pax2、wt1b呈升高趋势。而TGF-β1和smad5的产生在嘌呤霉素治疗后没有变化。本研究提供证据表明,嘌呤霉素诱导的成年斑马鱼肾脏损伤是评估肾细胞损伤和随后再生机制的潜在工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Animal Cells and Systems
Animal Cells and Systems 生物-动物学
CiteScore
4.50
自引率
24.10%
发文量
33
审稿时长
6 months
期刊介绍: Animal Cells and Systems is the official journal of the Korean Society for Integrative Biology. This international, peer-reviewed journal publishes original papers that cover diverse aspects of biological sciences including Bioinformatics and Systems Biology, Developmental Biology, Evolution and Systematic Biology, Population Biology, & Animal Behaviour, Molecular and Cellular Biology, Neurobiology and Immunology, and Translational Medicine.
期刊最新文献
Ongoing invasions by American bullfrogs and red-eared sliders in the Republic of Korea. Adaptation responses to salt stress in the gut of Poecilia reticulata. Differential pathological changes in colon microenvironments in acute and chronic mouse models of inflammatory bowel disease. Advances in modeling cellular state dynamics: integrating omics data and predictive techniques. Loss of neuronal βPix isoforms impairs neuronal morphology in the hippocampus and causes behavioral defects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1