Pub Date : 2025-03-03eCollection Date: 2025-01-01DOI: 10.1080/19768354.2025.2471476
Amaël Borzée, Tae Eun Um, Abhilasha Shrivastava, Siti N Othman
The Changbai Mountain Range is generally perceived as a barrier to amphibian distribution, but it might not be playing this role anymore. Rana coreana was first described as a Korean endemic species, split from Rana amurensis, which ranges at more northern latitude. The species was then found on the Shandong peninsula in China, where it was first described as Rana kunyuensis, before being synonymised with R. coreana. So far, the contact zone with R. amurensis was expected to be in the vicinity of Pyongyang in DPR Korea, west of the Baekdu Mountain Range. However, the species is known from a population further north, and during surveys in Dalian in Liaoning Province, China, we found R. coreana on the southern slopes of the Laoling Mountain Range facing the Yellow Sea. Our phylogenetic analyses based on mitochondrial ribosomal markers showed the individual to cluster with R. coreana samples from the Korean Peninsula. In addition, our ecological niche models showed the presence of suitable habitats outside of the known range of the species, deserving further investigation. The habitat of the species at this new locality is similar to the one known in the three range nations, and highlights the need for more surveys in northeast China as the barrier formed by the Changbai Range is more porous than originally expected.
{"title":"Behind the mountains and over the sea: the Changbai Mountain Range provided <i>Rana coreana</i> with a Chinese residence permit all along.","authors":"Amaël Borzée, Tae Eun Um, Abhilasha Shrivastava, Siti N Othman","doi":"10.1080/19768354.2025.2471476","DOIUrl":"10.1080/19768354.2025.2471476","url":null,"abstract":"<p><p>The Changbai Mountain Range is generally perceived as a barrier to amphibian distribution, but it might not be playing this role anymore. <i>Rana coreana</i> was first described as a Korean endemic species, split from <i>Rana amurensis</i>, which ranges at more northern latitude. The species was then found on the Shandong peninsula in China, where it was first described as <i>Rana kunyuensis</i>, before being synonymised with <i>R. coreana</i>. So far, the contact zone with <i>R. amurensis</i> was expected to be in the vicinity of Pyongyang in DPR Korea, west of the Baekdu Mountain Range. However, the species is known from a population further north, and during surveys in Dalian in Liaoning Province, China, we found <i>R. coreana</i> on the southern slopes of the Laoling Mountain Range facing the Yellow Sea. Our phylogenetic analyses based on mitochondrial ribosomal markers showed the individual to cluster with <i>R. coreana</i> samples from the Korean Peninsula. In addition, our ecological niche models showed the presence of suitable habitats outside of the known range of the species, deserving further investigation. The habitat of the species at this new locality is similar to the one known in the three range nations, and highlights the need for more surveys in northeast China as the barrier formed by the Changbai Range is more porous than originally expected.</p>","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":"29 1","pages":"21-28"},"PeriodicalIF":2.5,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11878174/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143555560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-02eCollection Date: 2025-01-01DOI: 10.1080/19768354.2025.2470455
Yebeen Kim, Jinwoo Hur, Sung-Chul Hong, Jaewoon Jung, Choon-Ho Park, Joon Beom Park, Taek Joon Yoon, Jong Bae Kim, Seung-Hoon Yang
Electro-hyperthermia therapy (EHT) has been known to cause temperature-dependent cell death and enhance the effects of conventional antitumor treatments, such as chemotherapy and radiotherapy. Furthermore, EHT modulates the innate and adaptive immune systems. Mistletoe is one of the most broadly studied complementary and alternative therapeutic agents for cancer treatment due to its ability to stimulate the immune systems. This study aimed to investigate the effects of EHT and mistletoe therapy combination on immune responses. Tumors induced by B16-BL6 melanoma cells were treated twice with modulated EHT (mEHT) (43°C for 10 or 20 min) and with intravenous injection of a Korean mistletoe extract (KME). We examined the level of interferon (IFN)-γ, granzyme, interleukin (IL)-2, IL-10, and tumor-specific antibodies using enzyme-linked immunosorbent assay methods to further study the immunological responses in the combination of mEHT and KME. Additionally, cytotoxic T lymphocyte (CTL) activity is investigated. In this study, we revealed a significant anti-tumor immunological activity elevation in tumor-bearing mice by combined mEHT and KME therapy. Specifically, the combination of mEHT and KME treatment was effective in inhibiting tumor growth in mice. The combination treatment elicited CTL immune response and increased IFN-γ and granzyme secretion. Particularly, the co-treatment appeared to efficiently suppress the immune signal related to tumor-associated macrophage differentiation. Importantly, tumor cell-specific antibodies could be induced in mice after mEHT-treated tumor cell immunization, which represent a promising cancer vaccine strategy. Thus, our results indicate the therapeutic actions of KME as a feasible partner of mEHT, suggesting its potential candidate for cancer immunotherapy. Abbreviations: APC, Antigen-presenting cell; CTL, Cytotoxic T lymphocyte; EHT, Electro-hyperthermia therapy; ELISA, Enzyme-linked immunosorbent assay; HSP, Heat shock protein; KME, Korean mistletoe extract; NK, Natural killer; PBS, Phosphate-buffered saline; QOL, Quality of life; RF, Radio-frequency; TAM, Tumor-associated macrophage.
{"title":"Modulated electro-hyperthermia therapy combined with Korean mistletoe extract treatment exerts a strong anti-tumor activity by enhancing cellular and humoral immune responses in mice.","authors":"Yebeen Kim, Jinwoo Hur, Sung-Chul Hong, Jaewoon Jung, Choon-Ho Park, Joon Beom Park, Taek Joon Yoon, Jong Bae Kim, Seung-Hoon Yang","doi":"10.1080/19768354.2025.2470455","DOIUrl":"10.1080/19768354.2025.2470455","url":null,"abstract":"<p><p>Electro-hyperthermia therapy (EHT) has been known to cause temperature-dependent cell death and enhance the effects of conventional antitumor treatments, such as chemotherapy and radiotherapy. Furthermore, EHT modulates the innate and adaptive immune systems. Mistletoe is one of the most broadly studied complementary and alternative therapeutic agents for cancer treatment due to its ability to stimulate the immune systems. This study aimed to investigate the effects of EHT and mistletoe therapy combination on immune responses. Tumors induced by B16-BL6 melanoma cells were treated twice with modulated EHT (mEHT) (43°C for 10 or 20 min) and with intravenous injection of a Korean mistletoe extract (KME). We examined the level of interferon (IFN)-γ, granzyme, interleukin (IL)-2, IL-10, and tumor-specific antibodies using enzyme-linked immunosorbent assay methods to further study the immunological responses in the combination of mEHT and KME. Additionally, cytotoxic T lymphocyte (CTL) activity is investigated. In this study, we revealed a significant anti-tumor immunological activity elevation in tumor-bearing mice by combined mEHT and KME therapy. Specifically, the combination of mEHT and KME treatment was effective in inhibiting tumor growth in mice. The combination treatment elicited CTL immune response and increased IFN-γ and granzyme secretion. Particularly, the co-treatment appeared to efficiently suppress the immune signal related to tumor-associated macrophage differentiation. Importantly, tumor cell-specific antibodies could be induced in mice after mEHT-treated tumor cell immunization, which represent a promising cancer vaccine strategy. Thus, our results indicate the therapeutic actions of KME as a feasible partner of mEHT, suggesting its potential candidate for cancer immunotherapy. Abbreviations: APC, Antigen-presenting cell; CTL, Cytotoxic T lymphocyte; EHT, Electro-hyperthermia therapy; ELISA, Enzyme-linked immunosorbent assay; HSP, Heat shock protein; KME, Korean mistletoe extract; NK, Natural killer; PBS, Phosphate-buffered saline; QOL, Quality of life; RF, Radio-frequency; TAM, Tumor-associated macrophage.</p>","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":"29 1","pages":"163-172"},"PeriodicalIF":2.5,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11878165/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143555561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-15eCollection Date: 2025-01-01DOI: 10.1080/19768354.2025.2465325
Geun-Seup Shin, Ah-Ra Jo, Jinho Kim, Ji-Young Kim, Chul-Hong Kim, Mi-Jin An, Hyun-Min Lee, Yuna Park, Yujeong Hwangbo, Jung-Woong Kim
Lamin B1, a crucial component of the nuclear lamina, plays a pivotal role in chromatin organization and transcriptional regulation in eukaryotic cells. While recent studies have highlighted the connection between Lamin B1 and RNA splicing regulation, the precise molecular mechanisms remain elusive. In this study, we demonstrate that Lamin B1 depletion leads to a global reduction in splicing factor expression, as evidenced by analysis of multiple RNA-seq datasets. Motif analysis suggests that members of the ETS transcription factor family likely bind to the promoter regions of these splicing factors. Further analysis using transcription factor databases and ChIP-seq data identified ETS1 as a key regulator of splicing factor expression. Hi-C sequencing revealed that the loss of Lamin B1 disrupts inter-LAD chromatin interactions near the ETS1 gene locus, resulting in its downregulation. These findings suggest that Lamin B1 indirectly regulates RNA splicing by sustaining proper ETS1 expression, uncovering a novel link between nuclear architecture, gene regulation, and RNA splicing.
{"title":"Lamin B1 regulates RNA splicing factor expression by modulating the spatial positioning and chromatin interactions of the <i>ETS1</i> gene locus.","authors":"Geun-Seup Shin, Ah-Ra Jo, Jinho Kim, Ji-Young Kim, Chul-Hong Kim, Mi-Jin An, Hyun-Min Lee, Yuna Park, Yujeong Hwangbo, Jung-Woong Kim","doi":"10.1080/19768354.2025.2465325","DOIUrl":"10.1080/19768354.2025.2465325","url":null,"abstract":"<p><p>Lamin B1, a crucial component of the nuclear lamina, plays a pivotal role in chromatin organization and transcriptional regulation in eukaryotic cells. While recent studies have highlighted the connection between Lamin B1 and RNA splicing regulation, the precise molecular mechanisms remain elusive. In this study, we demonstrate that Lamin B1 depletion leads to a global reduction in splicing factor expression, as evidenced by analysis of multiple RNA-seq datasets. Motif analysis suggests that members of the ETS transcription factor family likely bind to the promoter regions of these splicing factors. Further analysis using transcription factor databases and ChIP-seq data identified ETS1 as a key regulator of splicing factor expression. Hi-C sequencing revealed that the loss of Lamin B1 disrupts inter-LAD chromatin interactions near the ETS1 gene locus, resulting in its downregulation. These findings suggest that Lamin B1 indirectly regulates RNA splicing by sustaining proper ETS1 expression, uncovering a novel link between nuclear architecture, gene regulation, and RNA splicing.</p>","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":"29 1","pages":"149-162"},"PeriodicalIF":2.5,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11834782/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143447735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-11eCollection Date: 2025-01-01DOI: 10.1080/19768354.2025.2459622
Goeun Yoon, Jungwook Roh, Wonyi Jang, Wanyeon Kim
Circadian rhythms are 24-hour cycles in various biological processes, such as sleep, wake, and hormone secretion, controlled by an internal clock. Disruption of circadian rhythms has been related to various human diseases. Abnormal expression of circadian rhythm-related genes, such as CLOCK, BMAL1, PER1, PER2, CRY1, CRY2, RORα, NPAS2, REV-ERBα and TIMELESS has also been reported to be associated with cancer. CLOCK, CRY1, NPAS2 and TIMELESS are related to cancer development. In contrast, BMAL1, PER1, PER2, CRY2, RORα and REV-ERBα related to inhibit cancer development and progression. Furthermore, studies suggest that circadian genes related to cancer can be regulated by ncRNAs such as miRNAs, lncRNAs and circRNAs and that dysregulation of these ncRNAs contributes to cancer development. Here, we summarize the mechanisms whereby ncRNA dysregulation leads to the abnormal expression of circadian genes in several cancers and the ncRNA and circadian gene-associated regulatory mechanisms that contribute to resistance to chemo - and radiotherapy. This review provides insights into the mechanistic involvements of the regulatory network of circadian genes and ncRNAs in cancer development.
{"title":"Circadian genes and non-coding RNAs: interactions and implications in cancer.","authors":"Goeun Yoon, Jungwook Roh, Wonyi Jang, Wanyeon Kim","doi":"10.1080/19768354.2025.2459622","DOIUrl":"10.1080/19768354.2025.2459622","url":null,"abstract":"<p><p>Circadian rhythms are 24-hour cycles in various biological processes, such as sleep, wake, and hormone secretion, controlled by an internal clock. Disruption of circadian rhythms has been related to various human diseases. Abnormal expression of circadian rhythm-related genes, such as <i>CLOCK</i>, <i>BMAL1</i>, <i>PER1</i>, <i>PER2</i>, <i>CRY1</i>, <i>CRY2</i>, <i>RORα</i>, <i>NPAS2</i>, <i>REV-ERBα</i> and <i>TIMELESS</i> has also been reported to be associated with cancer. <i>CLOCK</i>, <i>CRY1</i>, <i>NPAS2</i> and <i>TIMELESS</i> are related to cancer development. In contrast, <i>BMAL1</i>, <i>PER1</i>, <i>PER2</i>, <i>CRY2</i>, <i>RORα</i> and <i>REV-ERBα</i> related to inhibit cancer development and progression. Furthermore, studies suggest that circadian genes related to cancer can be regulated by ncRNAs such as miRNAs, lncRNAs and circRNAs and that dysregulation of these ncRNAs contributes to cancer development. Here, we summarize the mechanisms whereby ncRNA dysregulation leads to the abnormal expression of circadian genes in several cancers and the ncRNA and circadian gene-associated regulatory mechanisms that contribute to resistance to chemo - and radiotherapy. This review provides insights into the mechanistic involvements of the regulatory network of circadian genes and ncRNAs in cancer development.</p>","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":"29 1","pages":"135-148"},"PeriodicalIF":2.5,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11816739/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143405400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-07eCollection Date: 2025-01-01DOI: 10.1080/19768354.2025.2459649
Yongeun Cho, Jeongmi Lee, Jun-Sik Kim, Yeji Jeon, Sukmin Han, Heewon Cho, Yeongyeong Lee, Tai Kyoung Kim, Ju-Mi Hong, Yujeong Lee, Yujung Byun, Minshik Chae, Sunyoung Park, Leon F Palomera, Sang Yoon Park, Hyunwook Kim, Soyeong Kim, Seongeun Kang, Jun-Goo Jee, Hongchan An, Joung Han Yim, Sung Hyun Kim, Dong-Gyu Jo
Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder characterized by cognitive decline, anxiety-like behavior, β-amyloid (Aβ) accumulation, and tau hyperphosphorylation. BACE1, the enzyme critical for Aβ production, has been a major therapeutic target; however, direct BACE1 inhibition has been associated with adverse side effects. This study investigates the therapeutic potential of RA-PR058, a novel ramalin derivative, as a multi-targeted modulator of AD-related pathologies. The effects of RA-PR058 were evaluated in vitro and in vivo. In vitro studies used SH-SY5Y cells under oxidative stress conditions to assess BACE1 expression, while in vivo effects were studied in 3xTg-AD mice following one month of oral RA-PR058 treatment. Behavioral assessments, biochemical analyses, transcriptomic profiling, and pharmacokinetic evaluations were performed to determine the efficacy of RA-PR058. RA-PR058 significantly reduced oxidative stress-induced BACE1 expression in vitro and decreased cortical BACE1 expression in 3xTg-AD mice. In vivo treatment alleviated anxiety-like behavior and reduced tau phosphorylation at disease-relevant sites (Ser202/Thr205, Thr231, and Ser396). Transcriptomic analysis revealed RA-PR058-mediated gene expression changes related to central nervous system development, response to hypoxia, and neuroactive ligand-receptor interactions, suggesting broader regulatory effects on AD-related pathways. Pharmacokinetic analysis demonstrated that RA-PR058 exhibits high metabolic stability, minimal cytochrome P450 interactions, and moderate blood-brain barrier penetration. RA-PR058 demonstrates potential as a multi-target AD therapeutic by reducing BACE1 expression, tau hyperphosphorylation, and anxiety-like behavior, coupled with favorable pharmacokinetics. Additional studies are needed to assess cognitive effects and clarify molecular mechanisms, but RA-PR058 may represent a promising advancement in addressing AD's complex pathology.
{"title":"RA-PR058, a novel ramalin derivative, reduces BACE1 expression and phosphorylation of tau in Alzheimer's disease mouse models.","authors":"Yongeun Cho, Jeongmi Lee, Jun-Sik Kim, Yeji Jeon, Sukmin Han, Heewon Cho, Yeongyeong Lee, Tai Kyoung Kim, Ju-Mi Hong, Yujeong Lee, Yujung Byun, Minshik Chae, Sunyoung Park, Leon F Palomera, Sang Yoon Park, Hyunwook Kim, Soyeong Kim, Seongeun Kang, Jun-Goo Jee, Hongchan An, Joung Han Yim, Sung Hyun Kim, Dong-Gyu Jo","doi":"10.1080/19768354.2025.2459649","DOIUrl":"10.1080/19768354.2025.2459649","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder characterized by cognitive decline, anxiety-like behavior, β-amyloid (Aβ) accumulation, and tau hyperphosphorylation. BACE1, the enzyme critical for Aβ production, has been a major therapeutic target; however, direct BACE1 inhibition has been associated with adverse side effects. This study investigates the therapeutic potential of RA-PR058, a novel ramalin derivative, as a multi-targeted modulator of AD-related pathologies. The effects of RA-PR058 were evaluated <i>in vitro</i> and <i>in vivo</i>. <i>In vitro</i> studies used SH-SY5Y cells under oxidative stress conditions to assess BACE1 expression, while <i>in vivo</i> effects were studied in 3xTg-AD mice following one month of oral RA-PR058 treatment. Behavioral assessments, biochemical analyses, transcriptomic profiling, and pharmacokinetic evaluations were performed to determine the efficacy of RA-PR058. RA-PR058 significantly reduced oxidative stress-induced BACE1 expression <i>in vitro</i> and decreased cortical BACE1 expression in 3xTg-AD mice. <i>In vivo</i> treatment alleviated anxiety-like behavior and reduced tau phosphorylation at disease-relevant sites (Ser202/Thr205, Thr231, and Ser396). Transcriptomic analysis revealed RA-PR058-mediated gene expression changes related to central nervous system development, response to hypoxia, and neuroactive ligand-receptor interactions, suggesting broader regulatory effects on AD-related pathways. Pharmacokinetic analysis demonstrated that RA-PR058 exhibits high metabolic stability, minimal cytochrome P450 interactions, and moderate blood-brain barrier penetration. RA-PR058 demonstrates potential as a multi-target AD therapeutic by reducing BACE1 expression, tau hyperphosphorylation, and anxiety-like behavior, coupled with favorable pharmacokinetics. Additional studies are needed to assess cognitive effects and clarify molecular mechanisms, but RA-PR058 may represent a promising advancement in addressing AD's complex pathology.</p>","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":"29 1","pages":"122-134"},"PeriodicalIF":2.5,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11809180/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143389733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-28eCollection Date: 2025-01-01DOI: 10.1080/19768354.2025.2455080
Desiree Andersen, Amaël Borzée, Yikweon Jang
Invasive species can be unpredictable in their ability to adapt and spread across novel landscapes. American bullfrogs (Lithobates catesbeianus) and red-eared sliders (Trachemys scripta elegans) have become invasive in South Korea since their introduction in the 1970s through the food and pet trades. One of the first steps to their population regulations is to determine each species' distribution in the country, which will allow for the identification of at-risk areas. In this study, we used a combination of kernel density and habitat suitability modeling to identify regions of current invasion and future spread for both species. We additionally modeled habitat suitability under a variety of climate scenarios, spanning 2021-2100 in order to determine possible climate change-based spread. For L. catesbeianus we found the total possible invasible area to be 46.2% of the country under current climate conditions, with 26.5% of the country currently invaded. For T. scripta, we found the total possible invasible area to be 38.5% of the country under current climate conditions, with 2.1% currently invaded. Finally, based on climate change predictions, both species are expected to have a decreased range of suitable area in the coming decades. The variations between the two invasive species pertain to their different breeding ecology.
{"title":"Ongoing invasions by American bullfrogs and red-eared sliders in the Republic of Korea.","authors":"Desiree Andersen, Amaël Borzée, Yikweon Jang","doi":"10.1080/19768354.2025.2455080","DOIUrl":"10.1080/19768354.2025.2455080","url":null,"abstract":"<p><p>Invasive species can be unpredictable in their ability to adapt and spread across novel landscapes. American bullfrogs (<i>Lithobates catesbeianus</i>) and red-eared sliders (<i>Trachemys scripta elegans</i>) have become invasive in South Korea since their introduction in the 1970s through the food and pet trades. One of the first steps to their population regulations is to determine each species' distribution in the country, which will allow for the identification of at-risk areas. In this study, we used a combination of kernel density and habitat suitability modeling to identify regions of current invasion and future spread for both species. We additionally modeled habitat suitability under a variety of climate scenarios, spanning 2021-2100 in order to determine possible climate change-based spread. For <i>L. catesbeianus</i> we found the total possible invasible area to be 46.2% of the country under current climate conditions, with 26.5% of the country currently invaded. For <i>T. scripta</i>, we found the total possible invasible area to be 38.5% of the country under current climate conditions, with 2.1% currently invaded. Finally, based on climate change predictions, both species are expected to have a decreased range of suitable area in the coming decades. The variations between the two invasive species pertain to their different breeding ecology.</p>","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":"29 1","pages":"113-121"},"PeriodicalIF":2.5,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11780698/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143063270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-18eCollection Date: 2025-01-01DOI: 10.1080/19768354.2025.2451408
NaYeon Ham, Minji Park, Young-An Bae, Eui-Ju Yeo, YunJae Jung
Inflammatory bowel disease is a chronic condition characterized by inflammation of the gastrointestinal tract, resulting from an abnormal immune response to normal stimuli, such as food and intestinal flora. Since the etiology of this disease remains largely unknown, murine models induced by the consumption of dextran-sodium sulfate serve as a pivotal tool for studying colon inflammation. In this study, we employed both acute and chronic colitis mouse models induced by varying durations of dextran-sodium sulfate consumption to investigate the pathological and immunologic characteristics throughout the disease course. During the acute phase, activated innate inflammation marked by M1 macrophage infiltration was prominent. In contrast, the chronic phase was characterized by tissue remodeling, with a significant increase in M2 macrophages and lymphocytes. RNA-sequencing revealed genetic changes in acute and chronic colitis, marked by the maintenance of genomic integrity in the acute phase and extracellular matrix dynamics in the chronic phase. These phase-specific alterations reflect the multifaceted physiological processes involved in the initiation and progression of inflammation in the large intestine, underscoring the necessity for distinct experimental approaches for each phase. The findings demonstrate that the factors shaping the large intestinal immune microenvironment change specifically during the acute and chronic phases of experimental inflammatory bowel disease, highlighting the importance of developing therapeutic strategies that align with the disease course.
{"title":"Differential pathological changes in colon microenvironments in acute and chronic mouse models of inflammatory bowel disease.","authors":"NaYeon Ham, Minji Park, Young-An Bae, Eui-Ju Yeo, YunJae Jung","doi":"10.1080/19768354.2025.2451408","DOIUrl":"10.1080/19768354.2025.2451408","url":null,"abstract":"<p><p>Inflammatory bowel disease is a chronic condition characterized by inflammation of the gastrointestinal tract, resulting from an abnormal immune response to normal stimuli, such as food and intestinal flora. Since the etiology of this disease remains largely unknown, murine models induced by the consumption of dextran-sodium sulfate serve as a pivotal tool for studying colon inflammation. In this study, we employed both acute and chronic colitis mouse models induced by varying durations of dextran-sodium sulfate consumption to investigate the pathological and immunologic characteristics throughout the disease course. During the acute phase, activated innate inflammation marked by M1 macrophage infiltration was prominent. In contrast, the chronic phase was characterized by tissue remodeling, with a significant increase in M2 macrophages and lymphocytes. RNA-sequencing revealed genetic changes in acute and chronic colitis, marked by the maintenance of genomic integrity in the acute phase and extracellular matrix dynamics in the chronic phase. These phase-specific alterations reflect the multifaceted physiological processes involved in the initiation and progression of inflammation in the large intestine, underscoring the necessity for distinct experimental approaches for each phase. The findings demonstrate that the factors shaping the large intestinal immune microenvironment change specifically during the acute and chronic phases of experimental inflammatory bowel disease, highlighting the importance of developing therapeutic strategies that align with the disease course.</p>","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":"29 1","pages":"100-112"},"PeriodicalIF":2.5,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11748878/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-18eCollection Date: 2025-01-01DOI: 10.1080/19768354.2025.2451413
Hyerim Lee, Hyunjae Yeo, Jihye Park, Keunsoo Kang, Sun-Ju Yi, Kyunghwan Kim
Osmoregulation is essential for the survival of aquatic organisms, particularly teleost fish facing osmotic challenges in environments characterized by variable salinity. While the gills are known for ion exchange, the intestine's role in water and salt absorption is gaining attention. Here, we investigated the adaptive responses of the intestine to salinity stress in guppies (Poecilia reticulata), observing significant morphological and transcriptomic alterations. Guppies showed superior salt tolerance compared to zebrafish (Danio rerio). Increasing salinity reduced villus length and intestinal diameter in guppies, while zebrafish exhibited damage to villus structure and loss of goblet cells. Transcriptomic analysis identified key genes involved in osmoregulation, tissue remodeling, and immune modulation. Upregulated genes included the solute carrier transporters slc2al and slc3al, which facilitate ion and water transport, as well as a transcription factor AP-1 subunit and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit beta, both of which participate in tissue repair and growth responses. In contrast, many genes related to the innate immune system (such as Tnfaip6) were downregulated, suggesting a shift toward the prioritization of osmoregulatory functions over immune responses. Interestingly, the differential expression of adaptation genes was linked to variations in epigenetic modifications and transcription factor activity. Transcription factors crucial for adapting to salt stress, such as bhlhe40, cebpd, and gata6, were progressively upregulated in guppies but remained downregulated in zebrafish. Our findings highlight the intricate mechanisms of adaptation to salinity stress in P. reticulata, providing insights into osmoregulatory mechanisms involving the intestine in aquatic organisms.
{"title":"Adaptation responses to salt stress in the gut of <i>Poecilia reticulata</i>.","authors":"Hyerim Lee, Hyunjae Yeo, Jihye Park, Keunsoo Kang, Sun-Ju Yi, Kyunghwan Kim","doi":"10.1080/19768354.2025.2451413","DOIUrl":"10.1080/19768354.2025.2451413","url":null,"abstract":"<p><p>Osmoregulation is essential for the survival of aquatic organisms, particularly teleost fish facing osmotic challenges in environments characterized by variable salinity. While the gills are known for ion exchange, the intestine's role in water and salt absorption is gaining attention. Here, we investigated the adaptive responses of the intestine to salinity stress in guppies (<i>Poecilia reticulata</i>), observing significant morphological and transcriptomic alterations. Guppies showed superior salt tolerance compared to zebrafish (<i>Danio rerio</i>). Increasing salinity reduced villus length and intestinal diameter in guppies, while zebrafish exhibited damage to villus structure and loss of goblet cells. Transcriptomic analysis identified key genes involved in osmoregulation, tissue remodeling, and immune modulation. Upregulated genes included the solute carrier transporters <i>slc2al</i> and <i>slc3al</i>, which facilitate ion and water transport, as well as a transcription factor AP-1 subunit and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit beta, both of which participate in tissue repair and growth responses. In contrast, many genes related to the innate immune system (such as <i>Tnfaip6</i>) were downregulated, suggesting a shift toward the prioritization of osmoregulatory functions over immune responses. Interestingly, the differential expression of adaptation genes was linked to variations in epigenetic modifications and transcription factor activity. Transcription factors crucial for adapting to salt stress, such as <i>bhlhe40</i>, <i>cebpd</i>, and <i>gata6,</i> were progressively upregulated in guppies but remained downregulated in zebrafish. Our findings highlight the intricate mechanisms of adaptation to salinity stress in <i>P. reticulata</i>, providing insights into osmoregulatory mechanisms involving the intestine in aquatic organisms.</p>","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":"29 1","pages":"84-99"},"PeriodicalIF":2.5,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11749108/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-10eCollection Date: 2025-01-01DOI: 10.1080/19768354.2024.2449518
Sungwon Jung
Dynamic modeling of cellular states has emerged as a pivotal approach for understanding complex biological processes such as cell differentiation, disease progression, and tissue development. This review provides a comprehensive overview of current approaches for modeling cellular state dynamics, focusing on techniques ranging from dynamic or static biomolecular network models to deep learning models. We highlight how these approaches integrated with various omics data such as transcriptomics, and single-cell RNA sequencing could be used to capture and predict cellular behavior and transitions. We also discuss applications of these modeling approaches in predicting gene knockout effects, designing targeted interventions, and simulating organ development. This review emphasizes the importance of selecting appropriate modeling strategies based on scalability and resolution requirements, which vary according to the complexity and size of biological systems under study. By evaluating strengths, limitations, and recent advancements of these methodologies, we aim to guide future research in developing more robust and interpretable models for understanding and manipulating cellular state dynamics in various biological contexts, ultimately advancing therapeutic strategies and precision medicine.
{"title":"Advances in modeling cellular state dynamics: integrating omics data and predictive techniques.","authors":"Sungwon Jung","doi":"10.1080/19768354.2024.2449518","DOIUrl":"10.1080/19768354.2024.2449518","url":null,"abstract":"<p><p>Dynamic modeling of cellular states has emerged as a pivotal approach for understanding complex biological processes such as cell differentiation, disease progression, and tissue development. This review provides a comprehensive overview of current approaches for modeling cellular state dynamics, focusing on techniques ranging from dynamic or static biomolecular network models to deep learning models. We highlight how these approaches integrated with various omics data such as transcriptomics, and single-cell RNA sequencing could be used to capture and predict cellular behavior and transitions. We also discuss applications of these modeling approaches in predicting gene knockout effects, designing targeted interventions, and simulating organ development. This review emphasizes the importance of selecting appropriate modeling strategies based on scalability and resolution requirements, which vary according to the complexity and size of biological systems under study. By evaluating strengths, limitations, and recent advancements of these methodologies, we aim to guide future research in developing more robust and interpretable models for understanding and manipulating cellular state dynamics in various biological contexts, ultimately advancing therapeutic strategies and precision medicine.</p>","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":"29 1","pages":"72-83"},"PeriodicalIF":2.5,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727055/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142977138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
βPix is a guanine nucleotide exchange factor for the Rac1 and Cdc42 small GTPases, which play important roles in dendritic spine morphogenesis by modulating actin cytoskeleton organization. The formation and plasticity of the dendritic spines are essential for normal brain function. Among the alternatively spliced βPix isoforms, βPix-b and βPix-d are expressed specifically in neurons. Our previous studies using cultured hippocampal neurons identified the roles of βPix-b and βPix-d in spine formation and neurite development, respectively. Here, we analyzed the in vivo role of the neuronal βPix isoforms in brain development and function by using βPix neuronal isoform knockout (βPix-NIKO) mice, in which the expression of the βPix-b and βPix-d isoforms is blocked, while the expression of the ubiquitous βPix-a isoform is maintained. Loss of the neuronal βPix isoforms leads to reduced activity of Rac1 and Cdc42, decreased dendritic complexity and spine density, and increased GluN2B and Ca2+/calmodulin-dependent protein kinase IIα expression in the hippocampus. The defects in neurite development, dendritic spine maturation, and synaptic density in cultured βPix-NIKO hippocampal neurons were rescued by the expression of βPix-b or βPix-d. In behavioral studies, βPix-NIKO mice exhibited robust deficits in novel object recognition and decreased anxiety levels. Our findings suggest that neuronal morphogenetic signaling by the neuronal βPix isoforms contributes to normal behaviors.
{"title":"Loss of neuronal βPix isoforms impairs neuronal morphology in the hippocampus and causes behavioral defects.","authors":"Younghee Kwon, Seung Joon Lee, Yoon Kyung Shin, June-Seek Choi, Dongeun Park, Jung Eun Shin","doi":"10.1080/19768354.2024.2448999","DOIUrl":"10.1080/19768354.2024.2448999","url":null,"abstract":"<p><p>βPix is a guanine nucleotide exchange factor for the Rac1 and Cdc42 small GTPases, which play important roles in dendritic spine morphogenesis by modulating actin cytoskeleton organization. The formation and plasticity of the dendritic spines are essential for normal brain function. Among the alternatively spliced βPix isoforms, βPix-b and βPix-d are expressed specifically in neurons. Our previous studies using cultured hippocampal neurons identified the roles of βPix-b and βPix-d in spine formation and neurite development, respectively. Here, we analyzed the <i>in vivo</i> role of the neuronal βPix isoforms in brain development and function by using βPix neuronal isoform knockout (βPix-NIKO) mice, in which the expression of the βPix-b and βPix-d isoforms is blocked, while the expression of the ubiquitous βPix-a isoform is maintained. Loss of the neuronal βPix isoforms leads to reduced activity of Rac1 and Cdc42, decreased dendritic complexity and spine density, and increased GluN2B and Ca<sup>2+</sup>/calmodulin-dependent protein kinase IIα expression in the hippocampus. The defects in neurite development, dendritic spine maturation, and synaptic density in cultured βPix-NIKO hippocampal neurons were rescued by the expression of βPix-b or βPix-d. In behavioral studies, βPix-NIKO mice exhibited robust deficits in novel object recognition and decreased anxiety levels. Our findings suggest that neuronal morphogenetic signaling by the neuronal βPix isoforms contributes to normal behaviors.</p>","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":"29 1","pages":"57-71"},"PeriodicalIF":2.5,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11722029/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142969399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}