Maxwell Wang, Max G'Sell, James F Castellano, R Mark Richardson, Avniel Ghuman
{"title":"A week in the life of the human brain: stable states punctuated by chaotic transitions.","authors":"Maxwell Wang, Max G'Sell, James F Castellano, R Mark Richardson, Avniel Ghuman","doi":"10.21203/rs.3.rs-2752903/v1","DOIUrl":null,"url":null,"abstract":"<p><p>Many important neurocognitive states, such as performing natural activities and fluctuations of arousal, shift over minutes-to-hours in the real-world. We harnessed 3-12 days of continuous multi-electrode intracranial recordings in twenty humans during natural behavior (socializing, using digital devices, sleeping, etc.) to study real-world neurodynamics. Applying deep learning with dynamical systems approaches revealed that brain networks formed consistent stable states that predicted behavior and physiology. Changes in behavior were associated with bursts of rapid neural fluctuations where brain networks chaotically explored many configurations before settling into new states. These trajectories traversed an hourglass-shaped structure anchored around a set of networks that slowly tracked levels of outward awareness related to wake-sleep stages, and a central attractor corresponding to default mode network activation. These findings indicate ways our brains use rapid, chaotic transitions that coalesce into neurocognitive states slowly fluctuating around a stabilizing central equilibrium to balance flexibility and stability during real-world behavior.</p>","PeriodicalId":21039,"journal":{"name":"Research Square","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10081438/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Square","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-2752903/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Many important neurocognitive states, such as performing natural activities and fluctuations of arousal, shift over minutes-to-hours in the real-world. We harnessed 3-12 days of continuous multi-electrode intracranial recordings in twenty humans during natural behavior (socializing, using digital devices, sleeping, etc.) to study real-world neurodynamics. Applying deep learning with dynamical systems approaches revealed that brain networks formed consistent stable states that predicted behavior and physiology. Changes in behavior were associated with bursts of rapid neural fluctuations where brain networks chaotically explored many configurations before settling into new states. These trajectories traversed an hourglass-shaped structure anchored around a set of networks that slowly tracked levels of outward awareness related to wake-sleep stages, and a central attractor corresponding to default mode network activation. These findings indicate ways our brains use rapid, chaotic transitions that coalesce into neurocognitive states slowly fluctuating around a stabilizing central equilibrium to balance flexibility and stability during real-world behavior.