{"title":"Report on Carcinogens Monograph on Cumene: RoC Monograph 02.","authors":"","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The National Toxicology Program conducted a cancer evaluation on cumene for possible listing in the Report on Carcinogens (RoC). The cancer evaluation is captured in the RoC monograph, which was peer reviewed in a public forum. The monograph consists of two components: (Part 1) the cancer evaluation, which reviews the relevant scientific information, assesses its quality, applies the RoC listing criteria to the scientific information, and provides the NTP recommendation for listing status for cumene in the RoC, and (Part 2) the substance profile proposed for the RoC, containing the NTP's listing status recommendation, a summary of the scientific evidence considered key to reaching that decision, and data on properties, use, production, exposure, and Federal regulations and guidelines to reduce exposure to cumene. This monograph provides an assessment of the available scientific information on cumene, including human exposure and properties, disposition and toxicokinetics, cancer studies in experimental animals, and studies of mechanisms and other related effects, including relevant toxicological effects, genetic toxicology, and mechanisms of carcinogenicity. From this assessment, the NTP recommended that cumene be listed as reasonably anticipated to be a human carcinogen in the RoC based on sufficient evidence from studies in experimental animals, which found that cumene exposure caused lung tumors in male and female mice and liver tumors in female mice. Several proposed mechanisms of carcinogenesis support the relevance to humans of the lung and liver tumors observed in experimental animals. Specifically, there is evidence that humans and experimental animals metabolize cumene through similar metabolic pathways. In addition, mutations of the K-ras oncogene and p53 tumor-suppressor gene observed in cumene-induced lung tumors in mice, along with altered expression of many other genes, resemble molecular alterations found in human lung and other cancers.</p>","PeriodicalId":74662,"journal":{"name":"Report on carcinogens. Monograph on ...","volume":" 02","pages":"1-166"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10150297/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Report on carcinogens. Monograph on ...","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The National Toxicology Program conducted a cancer evaluation on cumene for possible listing in the Report on Carcinogens (RoC). The cancer evaluation is captured in the RoC monograph, which was peer reviewed in a public forum. The monograph consists of two components: (Part 1) the cancer evaluation, which reviews the relevant scientific information, assesses its quality, applies the RoC listing criteria to the scientific information, and provides the NTP recommendation for listing status for cumene in the RoC, and (Part 2) the substance profile proposed for the RoC, containing the NTP's listing status recommendation, a summary of the scientific evidence considered key to reaching that decision, and data on properties, use, production, exposure, and Federal regulations and guidelines to reduce exposure to cumene. This monograph provides an assessment of the available scientific information on cumene, including human exposure and properties, disposition and toxicokinetics, cancer studies in experimental animals, and studies of mechanisms and other related effects, including relevant toxicological effects, genetic toxicology, and mechanisms of carcinogenicity. From this assessment, the NTP recommended that cumene be listed as reasonably anticipated to be a human carcinogen in the RoC based on sufficient evidence from studies in experimental animals, which found that cumene exposure caused lung tumors in male and female mice and liver tumors in female mice. Several proposed mechanisms of carcinogenesis support the relevance to humans of the lung and liver tumors observed in experimental animals. Specifically, there is evidence that humans and experimental animals metabolize cumene through similar metabolic pathways. In addition, mutations of the K-ras oncogene and p53 tumor-suppressor gene observed in cumene-induced lung tumors in mice, along with altered expression of many other genes, resemble molecular alterations found in human lung and other cancers.