Alexander P Christensen, Luis Eduardo Garrido, Hudson Golino
{"title":"Unique Variable Analysis: A Network Psychometrics Method to Detect Local Dependence.","authors":"Alexander P Christensen, Luis Eduardo Garrido, Hudson Golino","doi":"10.1080/00273171.2023.2194606","DOIUrl":null,"url":null,"abstract":"<p><p>The local independence assumption states that variables are unrelated after conditioning on a latent variable. Common problems that arise from violations of this assumption include model misspecification, biased model parameters, and inaccurate estimates of internal structure. These problems are not limited to latent variable models but also apply to network psychometrics. This paper proposes a novel network psychometric approach to detect locally dependent pairs of variables using network modeling and a graph theory measure called weighted topological overlap (wTO). Using simulation, this approach is compared to contemporary local dependence detection methods such as exploratory structural equation modeling with standardized expected parameter change and a recently developed approach using partial correlations and a resampling procedure. Different approaches to determine local dependence using statistical significance and cutoff values are also compared. Continuous, polytomous (5-point Likert scale), and dichotomous (binary) data were generated with skew across a variety of conditions. Our results indicate that cutoff values work better than significance approaches. Overall, the network psychometrics approaches using wTO with graphical least absolute shrinkage and selector operator with extended Bayesian information criterion and wTO with Bayesian Gaussian graphical model were the best performing local dependence detection methods overall.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multivariate Behavioral Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/00273171.2023.2194606","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 8
Abstract
The local independence assumption states that variables are unrelated after conditioning on a latent variable. Common problems that arise from violations of this assumption include model misspecification, biased model parameters, and inaccurate estimates of internal structure. These problems are not limited to latent variable models but also apply to network psychometrics. This paper proposes a novel network psychometric approach to detect locally dependent pairs of variables using network modeling and a graph theory measure called weighted topological overlap (wTO). Using simulation, this approach is compared to contemporary local dependence detection methods such as exploratory structural equation modeling with standardized expected parameter change and a recently developed approach using partial correlations and a resampling procedure. Different approaches to determine local dependence using statistical significance and cutoff values are also compared. Continuous, polytomous (5-point Likert scale), and dichotomous (binary) data were generated with skew across a variety of conditions. Our results indicate that cutoff values work better than significance approaches. Overall, the network psychometrics approaches using wTO with graphical least absolute shrinkage and selector operator with extended Bayesian information criterion and wTO with Bayesian Gaussian graphical model were the best performing local dependence detection methods overall.
期刊介绍:
Multivariate Behavioral Research (MBR) publishes a variety of substantive, methodological, and theoretical articles in all areas of the social and behavioral sciences. Most MBR articles fall into one of two categories. Substantive articles report on applications of sophisticated multivariate research methods to study topics of substantive interest in personality, health, intelligence, industrial/organizational, and other behavioral science areas. Methodological articles present and/or evaluate new developments in multivariate methods, or address methodological issues in current research. We also encourage submission of integrative articles related to pedagogy involving multivariate research methods, and to historical treatments of interest and relevance to multivariate research methods.