Artificial intelligence–enabled electrocardiogram to distinguish atrioventricular re-entrant tachycardia from atrioventricular nodal re-entrant tachycardia

IF 2.6 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS Cardiovascular digital health journal Pub Date : 2023-04-01 DOI:10.1016/j.cvdhj.2023.01.004
Arunashis Sau MRCP , Safi Ibrahim BSc , Daniel B. Kramer MD, MPH , Jonathan W. Waks MD , Norman Qureshi MRCP, PhD , Michael Koa-Wing MRCP, PhD , Daniel Keene MRCP, PhD , Louisa Malcolme-Lawes MRCP, PhD , David C. Lefroy FRCP FHRS , Nicholas W.F. Linton MRCP, PhD , Phang Boon Lim MRCP, PhD , Amanda Varnava FRCP, MD , Zachary I. Whinnett MRCP, PhD , Prapa Kanagaratnam MRCP, PhD , Danilo Mandic PhD , Nicholas S. Peters MD, FHRS , Fu Siong Ng PhD, FRCP, FHRS
{"title":"Artificial intelligence–enabled electrocardiogram to distinguish atrioventricular re-entrant tachycardia from atrioventricular nodal re-entrant tachycardia","authors":"Arunashis Sau MRCP ,&nbsp;Safi Ibrahim BSc ,&nbsp;Daniel B. Kramer MD, MPH ,&nbsp;Jonathan W. Waks MD ,&nbsp;Norman Qureshi MRCP, PhD ,&nbsp;Michael Koa-Wing MRCP, PhD ,&nbsp;Daniel Keene MRCP, PhD ,&nbsp;Louisa Malcolme-Lawes MRCP, PhD ,&nbsp;David C. Lefroy FRCP FHRS ,&nbsp;Nicholas W.F. Linton MRCP, PhD ,&nbsp;Phang Boon Lim MRCP, PhD ,&nbsp;Amanda Varnava FRCP, MD ,&nbsp;Zachary I. Whinnett MRCP, PhD ,&nbsp;Prapa Kanagaratnam MRCP, PhD ,&nbsp;Danilo Mandic PhD ,&nbsp;Nicholas S. Peters MD, FHRS ,&nbsp;Fu Siong Ng PhD, FRCP, FHRS","doi":"10.1016/j.cvdhj.2023.01.004","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Accurately determining arrhythmia mechanism from a 12-lead electrocardiogram (ECG) of supraventricular tachycardia can be challenging. We hypothesized a convolutional neural network (CNN) can be trained to classify atrioventricular re-entrant tachycardia (AVRT) vs atrioventricular nodal re-entrant tachycardia (AVNRT) from the 12-lead ECG, when using findings from the invasive electrophysiology (EP) study as the gold standard.</p></div><div><h3>Methods</h3><p>We trained a CNN on data from 124 patients undergoing EP studies with a final diagnosis of AVRT or AVNRT. A total of 4962 5-second 12-lead ECG segments were used for training. Each case was labeled AVRT or AVNRT based on the findings of the EP study. The model performance was evaluated against a hold-out test set of 31 patients and compared to an existing manual algorithm.</p></div><div><h3>Results</h3><p>The model had an accuracy of 77.4% in distinguishing between AVRT and AVNRT. The area under the receiver operating characteristic curve was 0.80. In comparison, the existing manual algorithm achieved an accuracy of 67.7% on the same test set. Saliency mapping demonstrated the network used the expected sections of the ECGs for diagnoses; these were the QRS complexes that may contain retrograde P waves.</p></div><div><h3>Conclusion</h3><p>We describe the first neural network trained to differentiate AVRT from AVNRT. Accurate diagnosis of arrhythmia mechanism from a 12-lead ECG could aid preprocedural counseling, consent, and procedure planning. The current accuracy from our neural network is modest but may be improved with a larger training dataset.</p></div>","PeriodicalId":72527,"journal":{"name":"Cardiovascular digital health journal","volume":"4 2","pages":"Pages 60-67"},"PeriodicalIF":2.6000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10123507/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular digital health journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666693623000051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 2

Abstract

Background

Accurately determining arrhythmia mechanism from a 12-lead electrocardiogram (ECG) of supraventricular tachycardia can be challenging. We hypothesized a convolutional neural network (CNN) can be trained to classify atrioventricular re-entrant tachycardia (AVRT) vs atrioventricular nodal re-entrant tachycardia (AVNRT) from the 12-lead ECG, when using findings from the invasive electrophysiology (EP) study as the gold standard.

Methods

We trained a CNN on data from 124 patients undergoing EP studies with a final diagnosis of AVRT or AVNRT. A total of 4962 5-second 12-lead ECG segments were used for training. Each case was labeled AVRT or AVNRT based on the findings of the EP study. The model performance was evaluated against a hold-out test set of 31 patients and compared to an existing manual algorithm.

Results

The model had an accuracy of 77.4% in distinguishing between AVRT and AVNRT. The area under the receiver operating characteristic curve was 0.80. In comparison, the existing manual algorithm achieved an accuracy of 67.7% on the same test set. Saliency mapping demonstrated the network used the expected sections of the ECGs for diagnoses; these were the QRS complexes that may contain retrograde P waves.

Conclusion

We describe the first neural network trained to differentiate AVRT from AVNRT. Accurate diagnosis of arrhythmia mechanism from a 12-lead ECG could aid preprocedural counseling, consent, and procedure planning. The current accuracy from our neural network is modest but may be improved with a larger training dataset.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能心电图用于区分房室复入性心动过速和房室结性复入性心动过速
背景从室上性心动过速的12导联心电图中准确确定心律失常机制可能具有挑战性。我们假设,当使用侵入性电生理学(EP)研究的结果作为金标准时,可以训练卷积神经网络(CNN)来对12导联心电图中的房室折返性心动过速(AVRT)与房室结折返性心动速(AVNRT)进行分类。方法我们对124名接受EP研究并最终诊断为AVRT或AVNRT的患者的数据进行CNN训练。共使用4962个5秒的12导联心电图片段进行训练。根据EP研究的结果,每个病例都被标记为AVRT或AVNRT。模型性能是根据31名患者的保持测试集进行评估的,并与现有的手动算法进行比较。结果该模型区分AVRT和AVNRT的准确率为77.4%。接收器工作特性曲线下的面积为0.80。相比之下,现有的手动算法在同一测试集上的准确率为67.7%。显著性映射显示网络使用心电图的预期部分进行诊断;这些是可能包含逆行P波的QRS波群。结论我们描述了第一个训练用于区分AVRT和AVNRT的神经网络。12导联心电图对心律失常机制的准确诊断有助于术前咨询、同意和手术计划。我们的神经网络目前的准确性是适度的,但可以通过更大的训练数据集来提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cardiovascular digital health journal
Cardiovascular digital health journal Cardiology and Cardiovascular Medicine
CiteScore
4.20
自引率
0.00%
发文量
0
审稿时长
58 days
期刊最新文献
Determinants of global cardiac implantable electrical device remote monitoring utilization – Results from an international survey Cellular-Enabled Remote Patient Monitoring for Pregnancies Complicated by Hypertension Point-of-care testing preferences 2020–2022: Trends over the years Feasibility of remote monitoring for fatal coronary heart disease using Apple Watch ECGs Artificial intelligence–based screening for cardiomyopathy in an obstetric population: A pilot study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1