Elizabeth Parra Gatica, Gerardo Duran Ojeda, Michael Wendler
{"title":"Contemporary flowable bulk-fill resin-based composites: a systematic review.","authors":"Elizabeth Parra Gatica, Gerardo Duran Ojeda, Michael Wendler","doi":"10.1080/26415275.2023.2175685","DOIUrl":null,"url":null,"abstract":"<p><p>Flowable bulk-fill resin-based composites (BF-RBCs) represent a new and interesting alternative for the bulk-fill restorative techniques in the posterior region. However, they comprise a heterogeneous group of materials, with important differences in composition and design. Therefore, the aim of the present systematic review was to compare the main properties of flowable BF-RBCs, including their composition, degree of monomer conversion (DC), polymerization shrinkage and shrinkage stress, as well as flexural strength. The search was conducted following PRISMA guidelines in the Medline (PubMed), Scopus and Web of Science databases. <i>In vitro</i> articles reporting on the DC, polymerization shrinkage/shrinkage stress, and flexural strength of flowable BF-RBCs strength were included. The QUIN risk-of-bias (RoB) tool was used for assessing the study quality. From initially 684 found articles, 53 were included. Values for DC ranged between 19.41 and 93.71%, whereas polymerization shrinkage varied between 1.26 and 10.45%. Polymerization shrinkage stresses reported by most studies ranged between 2 and 3 MPa. Flexural strength was above 80 MPa for most materials. A moderate RoB was observed in most studies. Flowable BF-RBCs meet the requirements to be indicated for bulk fill restoration technique in the posterior region. However, important variations among composition and properties hinder extrapolation of the results to materials different from those reported here. Clinical studies are urgently required to assess their performance under a real working scenario.</p>","PeriodicalId":72378,"journal":{"name":"Biomaterial investigations in dentistry","volume":"10 1","pages":"8-19"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10150621/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterial investigations in dentistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/26415275.2023.2175685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Flowable bulk-fill resin-based composites (BF-RBCs) represent a new and interesting alternative for the bulk-fill restorative techniques in the posterior region. However, they comprise a heterogeneous group of materials, with important differences in composition and design. Therefore, the aim of the present systematic review was to compare the main properties of flowable BF-RBCs, including their composition, degree of monomer conversion (DC), polymerization shrinkage and shrinkage stress, as well as flexural strength. The search was conducted following PRISMA guidelines in the Medline (PubMed), Scopus and Web of Science databases. In vitro articles reporting on the DC, polymerization shrinkage/shrinkage stress, and flexural strength of flowable BF-RBCs strength were included. The QUIN risk-of-bias (RoB) tool was used for assessing the study quality. From initially 684 found articles, 53 were included. Values for DC ranged between 19.41 and 93.71%, whereas polymerization shrinkage varied between 1.26 and 10.45%. Polymerization shrinkage stresses reported by most studies ranged between 2 and 3 MPa. Flexural strength was above 80 MPa for most materials. A moderate RoB was observed in most studies. Flowable BF-RBCs meet the requirements to be indicated for bulk fill restoration technique in the posterior region. However, important variations among composition and properties hinder extrapolation of the results to materials different from those reported here. Clinical studies are urgently required to assess their performance under a real working scenario.