Jizong Zhang, Guanghui Ren, Tao Huang, Yiming Sang, Yan Zhong, Yongxiang Yi
{"title":"miRNA-363-3p Hinders Proliferation, Migration, Invasion and Autophagy of Thyroid Cancer Cells by Controlling SYT1 Transcription to affect NF-κB.","authors":"Jizong Zhang, Guanghui Ren, Tao Huang, Yiming Sang, Yan Zhong, Yongxiang Yi","doi":"10.2174/1871530323666230504112553","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Thyroid cancer (TC) is a frequent endocrine malignant tumor with various pathologic types. miRNA-363-3p plays a pivotal part in the occurrence, development, prognosis, and treatment of cancer.</p><p><strong>Objective: </strong>To explore the mechanism of miRNA-363-3p in TC and provide a new idea for targeted therapy of TC.</p><p><strong>Methods: </strong>Differential miRNAs and downstream target mRNAs in TC tissues were predicted with bioinformatics analysis. Expression levels of miRNA-363-3p and Synaptotagmin I (SYT1) in TC cells were ascertained by qRT-PCR. Cell migration, invasion, and proliferation were detected by wound healing assay, transwell assay, colony formation assay, CCK-8, and BrdU fluorescence experiment, respectively. Flow cytometry was utilized to detect the levels of apoptosis and necrosis. Immunofluorescence assay was used for detecting autophagosome formation in cells, and the expression levels of autophagy-related proteins, as well as NF-κB related proteins, were measured by western blot. Dual-luciferase reporter gene assay was applied for detecting the interaction between miRNA-363-3p and SYT1.</p><p><strong>Results: </strong>miRNA-363-3p was prominently down-regulated in TC cells. miRNA-363-3p overexpression suppressed migration, invasion, and proliferation, promoting apoptosis and necrosis of TC cells. As the downstream target of miRNA-363-3p, SYT1 was up-regulated in TC cells. SYT1 overexpression reversed the inhibition of TC cell proliferation, invasion, migration, and autophagy mediated by miRNA-363-3p overexpression. In addition, miRNA-363-3p overexpression inhibited the activation of the NF-κB pathway in cells, while further overexpression of SYT1 weakened the inhibition of miRNA-363-3p overexpression on the NF-κB pathway.</p><p><strong>Conclusion: </strong>miRNA-363-3p affected the NF-κB signaling pathway by down-regulating SYT1 expression to inhibit the malignant progression of TC cells, providing theoretical support for the treatment of TC.</p>","PeriodicalId":11614,"journal":{"name":"Endocrine, metabolic & immune disorders drug targets","volume":" ","pages":"153-162"},"PeriodicalIF":2.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrine, metabolic & immune disorders drug targets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1871530323666230504112553","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Thyroid cancer (TC) is a frequent endocrine malignant tumor with various pathologic types. miRNA-363-3p plays a pivotal part in the occurrence, development, prognosis, and treatment of cancer.
Objective: To explore the mechanism of miRNA-363-3p in TC and provide a new idea for targeted therapy of TC.
Methods: Differential miRNAs and downstream target mRNAs in TC tissues were predicted with bioinformatics analysis. Expression levels of miRNA-363-3p and Synaptotagmin I (SYT1) in TC cells were ascertained by qRT-PCR. Cell migration, invasion, and proliferation were detected by wound healing assay, transwell assay, colony formation assay, CCK-8, and BrdU fluorescence experiment, respectively. Flow cytometry was utilized to detect the levels of apoptosis and necrosis. Immunofluorescence assay was used for detecting autophagosome formation in cells, and the expression levels of autophagy-related proteins, as well as NF-κB related proteins, were measured by western blot. Dual-luciferase reporter gene assay was applied for detecting the interaction between miRNA-363-3p and SYT1.
Results: miRNA-363-3p was prominently down-regulated in TC cells. miRNA-363-3p overexpression suppressed migration, invasion, and proliferation, promoting apoptosis and necrosis of TC cells. As the downstream target of miRNA-363-3p, SYT1 was up-regulated in TC cells. SYT1 overexpression reversed the inhibition of TC cell proliferation, invasion, migration, and autophagy mediated by miRNA-363-3p overexpression. In addition, miRNA-363-3p overexpression inhibited the activation of the NF-κB pathway in cells, while further overexpression of SYT1 weakened the inhibition of miRNA-363-3p overexpression on the NF-κB pathway.
Conclusion: miRNA-363-3p affected the NF-κB signaling pathway by down-regulating SYT1 expression to inhibit the malignant progression of TC cells, providing theoretical support for the treatment of TC.
期刊介绍:
Aims & Scope
This journal is devoted to timely reviews and original articles of experimental and clinical studies in the field of endocrine, metabolic, and immune disorders. Specific emphasis is placed on humoral and cellular targets for natural, synthetic, and genetically engineered drugs that enhance or impair endocrine, metabolic, and immune parameters and functions. Moreover, the topics related to effects of food components and/or nutraceuticals on the endocrine-metabolic-immune axis and on microbioma composition are welcome.