Editorial: CRISPR and beyond: Cutting-edge technologies for gene correction in therapeutic applications.

IF 4.9 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Frontiers in genome editing Pub Date : 2023-01-01 DOI:10.3389/fgeed.2023.1203864
Ayal Hendel, Rasmus O Bak
{"title":"Editorial: CRISPR and beyond: Cutting-edge technologies for gene correction in therapeutic applications.","authors":"Ayal Hendel, Rasmus O Bak","doi":"10.3389/fgeed.2023.1203864","DOIUrl":null,"url":null,"abstract":"Gene editing promises the ultimate cure for genetic diseases by directly correcting disease-causing variants. However, the first clinical trials have chased the “low hanging fruit” using editing strategies that rely on gene disruption by introducing double-strand DNA breaks that lead to insertions and deletions (indels) by the NHEJ pathway. Since NHEJ is constitutively active throughout the cell cycle and the default DNA repair pathway, this is by far the most efficient type of conventional gene editing as opposed to homology-directed repair (HDR). HDR relies on delivery of an exogenous repair template and this pathway is active only in the S and G2 phases of the cell cycle. These two parameters constitute challenges in clinical use of HDR since exogenous DNA is toxic in most therapeutically relevant cell types and since the inherent competition between NHEJ and HDR can be a bottleneck. However, HDR benefits from enabling precise edits to be made to the genome, thereby representing true gene editing with control over the outcome. Still, in both these modalities the DNA breaks are considered a potential source of genotoxicity due to the possibility of off-target edits and chromosomal aberrations such as translocations and chromothripsis. Next-generation gene editing tools like Base and Prime Editing that rely on DNA single strand nicking reduce the risk of such harmful events but are still limited in the scope of the edits they can generate (Anzalone et al., 2020). The newest types of editors based on CRISPR-associated transposases or CRISPR-directed integrases facilitate larger edits but are still under development and immature for clinical implementation (Yarnall et al., 2022; Tou et al., 2023). This rapidly developing toolbox is expected to broaden the application of CRISPR-based tools and other site-specific engineered nucleases to cure human disease. However, on this venture of realizing precise gene correction there are several unanswered questions and challenges to overcome, some of which we hope to address with this Research Topic on Therapeutic Gene Correction Strategies Based on CRISPR Systems or Other Engineered Site-specific Nucleases. This Research Topic covers a selection of contributions including significant scientific advances in precise genetic engineering as well as expert perspectives on recent advances. OPEN ACCESS","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10157280/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in genome editing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fgeed.2023.1203864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Gene editing promises the ultimate cure for genetic diseases by directly correcting disease-causing variants. However, the first clinical trials have chased the “low hanging fruit” using editing strategies that rely on gene disruption by introducing double-strand DNA breaks that lead to insertions and deletions (indels) by the NHEJ pathway. Since NHEJ is constitutively active throughout the cell cycle and the default DNA repair pathway, this is by far the most efficient type of conventional gene editing as opposed to homology-directed repair (HDR). HDR relies on delivery of an exogenous repair template and this pathway is active only in the S and G2 phases of the cell cycle. These two parameters constitute challenges in clinical use of HDR since exogenous DNA is toxic in most therapeutically relevant cell types and since the inherent competition between NHEJ and HDR can be a bottleneck. However, HDR benefits from enabling precise edits to be made to the genome, thereby representing true gene editing with control over the outcome. Still, in both these modalities the DNA breaks are considered a potential source of genotoxicity due to the possibility of off-target edits and chromosomal aberrations such as translocations and chromothripsis. Next-generation gene editing tools like Base and Prime Editing that rely on DNA single strand nicking reduce the risk of such harmful events but are still limited in the scope of the edits they can generate (Anzalone et al., 2020). The newest types of editors based on CRISPR-associated transposases or CRISPR-directed integrases facilitate larger edits but are still under development and immature for clinical implementation (Yarnall et al., 2022; Tou et al., 2023). This rapidly developing toolbox is expected to broaden the application of CRISPR-based tools and other site-specific engineered nucleases to cure human disease. However, on this venture of realizing precise gene correction there are several unanswered questions and challenges to overcome, some of which we hope to address with this Research Topic on Therapeutic Gene Correction Strategies Based on CRISPR Systems or Other Engineered Site-specific Nucleases. This Research Topic covers a selection of contributions including significant scientific advances in precise genetic engineering as well as expert perspectives on recent advances. OPEN ACCESS
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
编辑:CRISPR及其他:治疗应用中基因校正的尖端技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.00
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
Knockout mutation in TaD27 enhances number of productive tillers in hexaploid wheat. Targeting DLBCL by mutation-specific disruption of cancer-driving oncogenes. The potential of HBV cure: an overview of CRISPR-mediated HBV gene disruption. Use of paired Cas9-NG nickase and truncated sgRNAs for single-nucleotide microbial genome editing. Making gene editing accessible in resource limited environments: recommendations to guide a first-time user.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1