Pub Date : 2024-10-14eCollection Date: 2024-01-01DOI: 10.3389/fgeed.2024.1455761
Muhammad Jawad Akbar Awan, Imran Amin, Awais Rasheed, Nasir A Saeed, Shahid Mansoor
Recent advances allow the deployment of cluster regularly interspaced short palindromic repeats (CRISPR)-associated endonucleases (Cas) system for the targeted mutagenesis in the genome with accuracy and precision for trait improvement in crops. CRISPR-Cas systems have been extensively utilized to induce knockout or frameshift mutations in the targeted sequence of mostly negative regulating genes for wheat improvement. However, most of the reported work has been done in non-commercial varieties of wheat and introgression of edited alleles into breeding population comes with the penalty of unwanted linkage-drag. Wheat yield is controlled by various genes such as positive and negative regulators. The TaD27 gene is described as a negative regulator of shoot branching or tillering and involved in the biosynthesis of strigolactones. In this study, we developed Tad27 knockout mutant lines of an elite wheat cultivar that showed a twofold increase in the number of tillers and 1.8-fold increase in the number of grains per plant. Subsequently, enhancing the grain yield without any morphological penalty in the architecture of the plants. The co-transformation of regeneration enhancing growth regulator, Growth Regulating Factor 4 (GRF4) and its cofactor GRF-Interacting Factor 1 (GIF1), under single T-DNA cassette improved the regeneration efficiency up to 6% of transgenic events from mature embryos of wheat. Our results indicate that the CRISPR-mediated targeted mutagenesis confers the potential to knockout yield-related negative regulators in elite cultivars of wheat that can substantially enhance grain yield per plant and this strategy can be harnessed for the improvement of future wheat.
{"title":"Knockout mutation in <i>TaD27</i> enhances number of productive tillers in hexaploid wheat.","authors":"Muhammad Jawad Akbar Awan, Imran Amin, Awais Rasheed, Nasir A Saeed, Shahid Mansoor","doi":"10.3389/fgeed.2024.1455761","DOIUrl":"10.3389/fgeed.2024.1455761","url":null,"abstract":"<p><p>Recent advances allow the deployment of cluster regularly interspaced short palindromic repeats (CRISPR)-associated endonucleases (Cas) system for the targeted mutagenesis in the genome with accuracy and precision for trait improvement in crops. CRISPR-Cas systems have been extensively utilized to induce knockout or frameshift mutations in the targeted sequence of mostly negative regulating genes for wheat improvement. However, most of the reported work has been done in non-commercial varieties of wheat and introgression of edited alleles into breeding population comes with the penalty of unwanted linkage-drag. Wheat yield is controlled by various genes such as positive and negative regulators. The <i>TaD27</i> gene is described as a negative regulator of shoot branching or tillering and involved in the biosynthesis of strigolactones. In this study, we developed <i>Tad27</i> knockout mutant lines of an elite wheat cultivar that showed a twofold increase in the number of tillers and 1.8-fold increase in the number of grains per plant. Subsequently, enhancing the grain yield without any morphological penalty in the architecture of the plants. The co-transformation of regeneration enhancing growth regulator, G<i>rowth Regulating Factor 4</i> (<i>GRF4</i>) and its cofactor <i>GRF-Interacting Factor 1</i> (<i>GIF1</i>), under single T-DNA cassette improved the regeneration efficiency up to 6% of transgenic events from mature embryos of wheat. Our results indicate that the CRISPR-mediated targeted mutagenesis confers the potential to knockout yield-related negative regulators in elite cultivars of wheat that can substantially enhance grain yield per plant and this strategy can be harnessed for the improvement of future wheat.</p>","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513295/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-14eCollection Date: 2024-01-01DOI: 10.3389/fgeed.2024.1427322
Najmeh Heshmatpour, S Maryam Kazemi, Niklas D Schmidt, Sarita R Patnaik, Patrick Korus, Bodo G C Wilkens, Arturo Macarrón Palacios
Diffuse large B cell lymphomas (DLBCL) are highly aggressive tumors. Their genetic complexity and heterogeneity have hampered the development of novel approaches for precision medicine. Our study aimed to develop a personalized therapy for DLBCL by utilizing the CRISPR/Cas system to induce knockouts (KO) of driver genes, thereby causing cancer cell death while minimizing side effects. We focused on OCI-LY3 cells, modeling DLBCL, and compared them with BJAB cells as controls. Analysis of whole exome sequencing revealed significant mutations in genes like PAX5, CD79B, and MYC in OCI-LY3 cells. CRISPR/Cas9-mediated KO of these genes resulted in reduced cancer cell viability. Subsequent single and dual gRNA targeting of PAX5 mutations inhibited proliferation specifically in OCI-LY3 cells. Moreover, dual gRNA targeting of PAX5 and MYC induced chromosomal rearrangements, reducing cell proliferation substantially. However, targeting single intronic mutations did not affect cell viability, highlighting the importance of disrupting protein function. Targeting multiple mutations simultaneously addresses intra-tumoral heterogeneity, and the transient delivery of CRISPR/Cas9 allows for permanent gene disruption. While challenges such as incomplete editing efficiency and delivery limitations exist, further optimization may enhance therapeutic efficacy. Overall, our findings demonstrate the efficacy of CRISPR/Cas9 in targeting oncogenic mutations, opening avenues for precision medicine in DLBCL treatment.
{"title":"Targeting DLBCL by mutation-specific disruption of cancer-driving oncogenes.","authors":"Najmeh Heshmatpour, S Maryam Kazemi, Niklas D Schmidt, Sarita R Patnaik, Patrick Korus, Bodo G C Wilkens, Arturo Macarrón Palacios","doi":"10.3389/fgeed.2024.1427322","DOIUrl":"10.3389/fgeed.2024.1427322","url":null,"abstract":"<p><p>Diffuse large B cell lymphomas (DLBCL) are highly aggressive tumors. Their genetic complexity and heterogeneity have hampered the development of novel approaches for precision medicine. Our study aimed to develop a personalized therapy for DLBCL by utilizing the CRISPR/Cas system to induce knockouts (KO) of driver genes, thereby causing cancer cell death while minimizing side effects. We focused on OCI-LY3 cells, modeling DLBCL, and compared them with BJAB cells as controls. Analysis of whole exome sequencing revealed significant mutations in genes like <i>PAX5</i>, <i>CD79B</i>, and <i>MYC</i> in OCI-LY3 cells. CRISPR/Cas9-mediated KO of these genes resulted in reduced cancer cell viability. Subsequent single and dual gRNA targeting of <i>PAX5</i> mutations inhibited proliferation specifically in OCI-LY3 cells. Moreover, dual gRNA targeting of <i>PAX5</i> and <i>MYC</i> induced chromosomal rearrangements, reducing cell proliferation substantially. However, targeting single intronic mutations did not affect cell viability, highlighting the importance of disrupting protein function. Targeting multiple mutations simultaneously addresses intra-tumoral heterogeneity, and the transient delivery of CRISPR/Cas9 allows for permanent gene disruption. While challenges such as incomplete editing efficiency and delivery limitations exist, further optimization may enhance therapeutic efficacy. Overall, our findings demonstrate the efficacy of CRISPR/Cas9 in targeting oncogenic mutations, opening avenues for precision medicine in DLBCL treatment.</p>","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513324/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09eCollection Date: 2024-01-01DOI: 10.3389/fgeed.2024.1467449
Zhi Q Yao, Madison B Schank, Juan Zhao, Mohamed El Gazzar, Ling Wang, Yi Zhang, Addison C Hill, Puja Banik, Jaeden S Pyburn, Jonathan P Moorman
Hepatitis B virus (HBV) infection is a common cause of liver disease worldwide. The current antiviral treatment using nucleotide analogues (NAs) can only suppress de novo HBV replication but cannot eliminate chronic HBV infection due to the persistence of covalently closed circular (ccc) DNA that sustains viral replication. The CRISPR/Cas9 system is a novel genome-editing tool that enables precise gene disruption and inactivation. With high efficiency and simplicity, the CRISPR/Cas9 system has been utilized in multiple studies to disrupt the HBV genome specifically, eliciting varying anti-HBV effects both in vitro and in vivo. Additionally, multi-locus gene targeting has shown enhanced antiviral activity, paving the way for combination therapy to disrupt and inactivate HBV cccDNA as well as integrated HBV DNA. Despite its promising antiviral effects, this technology faces several challenges that need to be overcome before its clinical application, i.e., off-target effects and in vivo drug delivery. As such, there is a need for improvement in CRISPR/Cas9 efficiency, specificity, versatility, and delivery. Here, we critically review the recent literature describing the tools employed in designing guide RNAs (gRNAs) targeting HBV genomes, the vehicles used for expressing and delivering CRISPR/Cas9 components, the models used for evaluating CRISPR-mediated HBV gene disruption, the methods used for assessing antiviral and off-target effects induced by CRISPR/Cas9-mediated HBV gene disruption, and the prospects of future directions and challenges in leveraging this HBV gene-editing approach, to advance the HBV treatment toward a clinical cure.
{"title":"The potential of HBV cure: an overview of CRISPR-mediated HBV gene disruption.","authors":"Zhi Q Yao, Madison B Schank, Juan Zhao, Mohamed El Gazzar, Ling Wang, Yi Zhang, Addison C Hill, Puja Banik, Jaeden S Pyburn, Jonathan P Moorman","doi":"10.3389/fgeed.2024.1467449","DOIUrl":"https://doi.org/10.3389/fgeed.2024.1467449","url":null,"abstract":"<p><p>Hepatitis B virus (HBV) infection is a common cause of liver disease worldwide. The current antiviral treatment using nucleotide analogues (NAs) can only suppress <i>de novo</i> HBV replication but cannot eliminate chronic HBV infection due to the persistence of covalently closed circular (ccc) DNA that sustains viral replication. The CRISPR/Cas9 system is a novel genome-editing tool that enables precise gene disruption and inactivation. With high efficiency and simplicity, the CRISPR/Cas9 system has been utilized in multiple studies to disrupt the HBV genome specifically, eliciting varying anti-HBV effects both <i>in vitro</i> and <i>in vivo</i>. Additionally, multi-locus gene targeting has shown enhanced antiviral activity, paving the way for combination therapy to disrupt and inactivate HBV cccDNA as well as integrated HBV DNA. Despite its promising antiviral effects, this technology faces several challenges that need to be overcome before its clinical application, i.e., off-target effects and <i>in vivo</i> drug delivery. As such, there is a need for improvement in CRISPR/Cas9 efficiency, specificity, versatility, and delivery. Here, we critically review the recent literature describing the tools employed in designing guide RNAs (gRNAs) targeting HBV genomes, the vehicles used for expressing and delivering CRISPR/Cas9 components, the models used for evaluating CRISPR-mediated HBV gene disruption, the methods used for assessing antiviral and off-target effects induced by CRISPR/Cas9-mediated HBV gene disruption, and the prospects of future directions and challenges in leveraging this HBV gene-editing approach, to advance the HBV treatment toward a clinical cure.</p>","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496132/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-26eCollection Date: 2024-01-01DOI: 10.3389/fgeed.2024.1471720
Song Hee Jeong, Ho Joung Lee, Sang Jun Lee
The paired nickases approach, which utilizes clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated proteins (Cas) nickase and dual guide RNA, has the advantage of reducing off-target effects by being able to double the target sequence. In this study, our research utilized the Cas9-NG nickase variant to minimize PAM sequence constraints, enabling the generation of paired nicks at desired genomic loci. We performed a systematic investigation into the formation sites for double nicks and the design of donor DNA within a bacterial model system. Although we successfully identified the conditions necessary for the effective formation of double nicks in vivo, achieving single-nucleotide level editing directly at the target sites in the genome proved challenging. Nonetheless, our experiments revealed that efficient editing at the single-nucleotide level was achievable on target DNA sequences that are hybridized with 5'-end-truncated dual single-guide RNAs (sgRNAs). Our findings contribute to a deeper understanding of the paired nickases approach, offering a single-mismatch intolerance design strategy for accurate nucleotide editing. This strategy not only enhances the precision of genome editing but also marks a significant step forward in the development of nickase-derived genome editing technologies.
配对切口酶方法利用聚类规则间隔短回文重复序列(CRISPR)-CRISPR相关蛋白(Cas)切口酶和双引导RNA,其优点是能够加倍靶序列,从而减少脱靶效应。在本研究中,我们利用Cas9-NG切口酶变体最大程度地减少了PAM序列限制,从而在所需的基因组位点上生成了成对的切口。我们在细菌模型系统中对双缺口的形成位点和供体 DNA 的设计进行了系统研究。虽然我们成功地确定了在体内有效形成双缺口的必要条件,但直接在基因组的目标位点实现单核苷酸水平的编辑证明具有挑战性。不过,我们的实验表明,在与 5'-end-truncated 双单导 RNA(sgRNA)杂交的目标 DNA 序列上,可以实现单核苷酸水平的高效编辑。我们的研究结果有助于加深对成对缺口酶方法的理解,为精确的核苷酸编辑提供了一种单错配不容忍设计策略。这一策略不仅提高了基因组编辑的精确度,而且标志着镍酶衍生基因组编辑技术的发展向前迈出了重要一步。
{"title":"Use of paired Cas9-NG nickase and truncated sgRNAs for single-nucleotide microbial genome editing.","authors":"Song Hee Jeong, Ho Joung Lee, Sang Jun Lee","doi":"10.3389/fgeed.2024.1471720","DOIUrl":"10.3389/fgeed.2024.1471720","url":null,"abstract":"<p><p>The paired nickases approach, which utilizes clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated proteins (Cas) nickase and dual guide RNA, has the advantage of reducing off-target effects by being able to double the target sequence. In this study, our research utilized the Cas9-NG nickase variant to minimize PAM sequence constraints, enabling the generation of paired nicks at desired genomic loci. We performed a systematic investigation into the formation sites for double nicks and the design of donor DNA within a bacterial model system. Although we successfully identified the conditions necessary for the effective formation of double nicks <i>in vivo</i>, achieving single-nucleotide level editing directly at the target sites in the genome proved challenging. Nonetheless, our experiments revealed that efficient editing at the single-nucleotide level was achievable on target DNA sequences that are hybridized with 5'-end-truncated dual single-guide RNAs (sgRNAs). Our findings contribute to a deeper understanding of the paired nickases approach, offering a single-mismatch intolerance design strategy for accurate nucleotide editing. This strategy not only enhances the precision of genome editing but also marks a significant step forward in the development of nickase-derived genome editing technologies.</p>","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11464485/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142402119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-25eCollection Date: 2024-01-01DOI: 10.3389/fgeed.2024.1464531
Shivani Goolab, Janine Scholefield
The designer nuclease, CRISPR-Cas9 system has advanced the field of genome engineering owing to its programmability and ease of use. The application of these molecular scissors for genome engineering earned the developing researchers the Nobel prize in Chemistry in the year 2020. At present, the potential of this technology to improve global challenges continues to grow exponentially. CRISPR-Cas9 shows promise in the recent advances made in the Global North such as the FDA-approved gene therapy for the treatment of sickle cell anaemia and β-thalassemia and the gene editing of porcine kidney for xenotransplantation into humans affected by end-stage kidney failure. Limited resources, low government investment with an allocation of 1% of gross domestic production to research and development including a shortage of skilled professionals and lack of knowledge may preclude the use of this revolutionary technology in the Global South where the countries involved have reduced science and technology budgets. Focusing on the practical application of genome engineering, successful genetic manipulation is not easily accomplishable and is influenced by the chromatin landscape of the target locus, guide RNA selection, the experimental design including the profiling of the gene edited cells, which impacts the overall outcome achieved. Our assessment primarily delves into economical approaches of performing efficient genome engineering to support the first-time user restricted by limited resources with the aim of democratizing the use of the technology across low- and middle-income countries. Here we provide a comprehensive overview on existing experimental techniques, the significance for target locus analysis and current pitfalls such as the underrepresentation of global genetic diversity. Several perspectives of genome engineering approaches are outlined, which can be adopted in a resource limited setting to enable a higher success rate of genome editing-based innovations in low- and middle-income countries.
{"title":"Making gene editing accessible in resource limited environments: recommendations to guide a first-time user.","authors":"Shivani Goolab, Janine Scholefield","doi":"10.3389/fgeed.2024.1464531","DOIUrl":"10.3389/fgeed.2024.1464531","url":null,"abstract":"<p><p>The designer nuclease, CRISPR-Cas9 system has advanced the field of genome engineering owing to its programmability and ease of use. The application of these molecular scissors for genome engineering earned the developing researchers the Nobel prize in Chemistry in the year 2020. At present, the potential of this technology to improve global challenges continues to grow exponentially. CRISPR-Cas9 shows promise in the recent advances made in the Global North such as the FDA-approved gene therapy for the treatment of sickle cell anaemia and β-thalassemia and the gene editing of porcine kidney for xenotransplantation into humans affected by end-stage kidney failure. Limited resources, low government investment with an allocation of 1% of gross domestic production to research and development including a shortage of skilled professionals and lack of knowledge may preclude the use of this revolutionary technology in the Global South where the countries involved have reduced science and technology budgets. Focusing on the practical application of genome engineering, successful genetic manipulation is not easily accomplishable and is influenced by the chromatin landscape of the target locus, guide RNA selection, the experimental design including the profiling of the gene edited cells, which impacts the overall outcome achieved. Our assessment primarily delves into economical approaches of performing efficient genome engineering to support the first-time user restricted by limited resources with the aim of democratizing the use of the technology across low- and middle-income countries. Here we provide a comprehensive overview on existing experimental techniques, the significance for target locus analysis and current pitfalls such as the underrepresentation of global genetic diversity. Several perspectives of genome engineering approaches are outlined, which can be adopted in a resource limited setting to enable a higher success rate of genome editing-based innovations in low- and middle-income countries.</p>","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461239/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142395669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-24eCollection Date: 2024-01-01DOI: 10.3389/fgeed.2024.1467080
Diane Wray-Cahen, Eric Hallerman, Mark Tizard
Genome editing (GnEd) has the potential to provide many benefits to animal agriculture, offering a means for achieving rapid growth, disease resistance, and novel phenotypes. The technology has the potential to be useful for rapidly incorporating traits into existing selectively bred animals without the need for crossbreeding and backcrossing. Yet only four products from animals created via biotechnology, all growth-enhanced fishes, have reached commercialization and only on a limited scale. The past failure of genetically engineered (or GM) products to reach conventional producers can largely be attributed to the high cost of meeting GMO regulatory requirements. We review the history of GMO regulations internationally, noting the influence of Codex Alimentarius on the development of many existing regulatory frameworks. We highlight new regulatory approaches for GnEd organisms, first developed by Argentina, and the adoption of similar approaches by other countries. Such new regulatory approaches allow GnEd organisms that could have been developed by conventional means to be regulated under the same rules as conventional organisms and in the future is likely to enhance the opportunity for biotech animals to enter production. Treating certain GnEd products as conventional has had a large impact on the variety of biotechnological innovations successfully navigating regulatory processes. We suggest that for the full potential of GnEd technologies to be realized, enabling public policies are needed to facilitate use of GnEd as a breeding tool to incorporate new traits within existing animal breeding programs, rather than only a tool to create distinct new products.
{"title":"Global regulatory policies for animal biotechnology: overview, opportunities and challenges.","authors":"Diane Wray-Cahen, Eric Hallerman, Mark Tizard","doi":"10.3389/fgeed.2024.1467080","DOIUrl":"https://doi.org/10.3389/fgeed.2024.1467080","url":null,"abstract":"<p><p>Genome editing (GnEd) has the potential to provide many benefits to animal agriculture, offering a means for achieving rapid growth, disease resistance, and novel phenotypes. The technology has the potential to be useful for rapidly incorporating traits into existing selectively bred animals without the need for crossbreeding and backcrossing. Yet only four products from animals created via biotechnology, all growth-enhanced fishes, have reached commercialization and only on a limited scale. The past failure of genetically engineered (or GM) products to reach conventional producers can largely be attributed to the high cost of meeting GMO regulatory requirements. We review the history of GMO regulations internationally, noting the influence of Codex Alimentarius on the development of many existing regulatory frameworks. We highlight new regulatory approaches for GnEd organisms, first developed by Argentina, and the adoption of similar approaches by other countries. Such new regulatory approaches allow GnEd organisms that could have been developed by conventional means to be regulated under the same rules as conventional organisms and in the future is likely to enhance the opportunity for biotech animals to enter production. Treating certain GnEd products as conventional has had a large impact on the variety of biotechnological innovations successfully navigating regulatory processes. We suggest that for the full potential of GnEd technologies to be realized, enabling public policies are needed to facilitate use of GnEd as a breeding tool to incorporate new traits within existing animal breeding programs, rather than only a tool to create distinct new products.</p>","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11459211/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142395668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-12eCollection Date: 2024-01-01DOI: 10.3389/fgeed.2024.1401088
Muhammad Sulyman Saleem, Sultan Habibullah Khan, Aftab Ahmad, Iqrar Ahmad Rana, Zunaira Afzal Naveed, Azeem Iqbal Khan
Cotton is globally known for its high-priority cellulose-rich natural fiber. In addition to providing fiber for the textile industry, it is an important source material for edible oil, livestock feed, and fuel products. Global warming and the growing population are the major challenges to the world's agriculture and the potential risks to food security. In this context, improving output traits in cotton is necessary to achieve sustainable cotton production. During the last few years, high throughput omics techniques have aided in identifying crucial genes associated with traits of cotton fiber, seed, and plant architecture which could be targeted with more precision and efficiency through the CIRPSR/Cas-mediated genome editing technique. The various CRISPR/Cas systems such as CRISPR/Cas9, CRISPR/nCas9, and CRISPR/Cas12a have been employed to edit cotton genes associated with a wide range of traits including fiber length, flowering, leaf colour, rooting, seed oil, plant architecture, gossypol content, somatic embryogenesis, and biotic and abiotic stresses tolerance, highlighting its effectiveness in editing the cotton genome. Thus, CRISPR/Cas-mediated genome editing has emerged as a technique of choice to tailor crop phenotypes for better yield potential and environmental resilience. The review covers a comprehensive analysis of cotton phenotypic traits and their improvement with the help of the latest genome editing tools to improve fiber, food, feed, and fuel-associated genes of cotton to ensure food security.
{"title":"The 4Fs of cotton: genome editing of cotton for fiber, food, feed, and fuel to achieve zero hunger.","authors":"Muhammad Sulyman Saleem, Sultan Habibullah Khan, Aftab Ahmad, Iqrar Ahmad Rana, Zunaira Afzal Naveed, Azeem Iqbal Khan","doi":"10.3389/fgeed.2024.1401088","DOIUrl":"https://doi.org/10.3389/fgeed.2024.1401088","url":null,"abstract":"<p><p>Cotton is globally known for its high-priority cellulose-rich natural fiber. In addition to providing fiber for the textile industry, it is an important source material for edible oil, livestock feed, and fuel products. Global warming and the growing population are the major challenges to the world's agriculture and the potential risks to food security. In this context, improving output traits in cotton is necessary to achieve sustainable cotton production. During the last few years, high throughput omics techniques have aided in identifying crucial genes associated with traits of cotton fiber, seed, and plant architecture which could be targeted with more precision and efficiency through the CIRPSR/Cas-mediated genome editing technique. The various CRISPR/Cas systems such as CRISPR/Cas9, CRISPR/nCas9, and CRISPR/Cas12a have been employed to edit cotton genes associated with a wide range of traits including fiber length, flowering, leaf colour, rooting, seed oil, plant architecture, gossypol content, somatic embryogenesis, and biotic and abiotic stresses tolerance, highlighting its effectiveness in editing the cotton genome. Thus, CRISPR/Cas-mediated genome editing has emerged as a technique of choice to tailor crop phenotypes for better yield potential and environmental resilience. The review covers a comprehensive analysis of cotton phenotypic traits and their improvement with the help of the latest genome editing tools to improve fiber, food, feed, and fuel-associated genes of cotton to ensure food security.</p>","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11424549/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142333831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-23eCollection Date: 2024-01-01DOI: 10.3389/fgeed.2024.1458037
Chiara Simoni, Elena Barbon, Andrés F Muro, Alessio Cantore
The liver is an essential organ of the body that performs several vital functions, including the metabolism of biomolecules, foreign substances, and toxins, and the production of plasma proteins, such as coagulation factors. There are hundreds of genetic disorders affecting liver functions and, for many of them, the only curative option is orthotopic liver transplantation, which nevertheless entails many risks and long-term complications. Some peculiar features of the liver, such as its large blood flow supply and the tolerogenic immune environment, make it an attractive target for in vivo gene therapy approaches. In recent years, several genome-editing tools mainly based on the clustered regularly interspaced short palindromic repeats associated protein 9 (CRISPR-Cas9) system have been successfully exploited in the context of liver-directed preclinical or clinical therapeutic applications. These include gene knock-out, knock-in, activation, interference, or base and prime editing approaches. Despite many achievements, important challenges still need to be addressed to broaden clinical applications, such as the optimization of the delivery methods, the improvement of the editing efficiency, and the risk of on-target or off-target unwanted effects and chromosomal rearrangements. In this review, we highlight the latest progress in the development of in vivo liver-targeted genome editing approaches for the treatment of genetic disorders. We describe the technological advancements that are currently under investigation, the challenges to overcome for clinical applicability, and the future perspectives of this technology.
{"title":"<i>In vivo</i> liver targeted genome editing as therapeutic approach: progresses and challenges.","authors":"Chiara Simoni, Elena Barbon, Andrés F Muro, Alessio Cantore","doi":"10.3389/fgeed.2024.1458037","DOIUrl":"10.3389/fgeed.2024.1458037","url":null,"abstract":"<p><p>The liver is an essential organ of the body that performs several vital functions, including the metabolism of biomolecules, foreign substances, and toxins, and the production of plasma proteins, such as coagulation factors. There are hundreds of genetic disorders affecting liver functions and, for many of them, the only curative option is orthotopic liver transplantation, which nevertheless entails many risks and long-term complications. Some peculiar features of the liver, such as its large blood flow supply and the tolerogenic immune environment, make it an attractive target for <i>in vivo</i> gene therapy approaches. In recent years, several genome-editing tools mainly based on the clustered regularly interspaced short palindromic repeats associated protein 9 (CRISPR-Cas9) system have been successfully exploited in the context of liver-directed preclinical or clinical therapeutic applications. These include gene knock-out, knock-in, activation, interference, or base and prime editing approaches. Despite many achievements, important challenges still need to be addressed to broaden clinical applications, such as the optimization of the delivery methods, the improvement of the editing efficiency, and the risk of on-target or off-target unwanted effects and chromosomal rearrangements. In this review, we highlight the latest progress in the development of <i>in vivo</i> liver-targeted genome editing approaches for the treatment of genetic disorders. We describe the technological advancements that are currently under investigation, the challenges to overcome for clinical applicability, and the future perspectives of this technology.</p>","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378722/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142157203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-09DOI: 10.3389/fgeed.2024.1398813
M. S. Adegbaju, Titilayo Ajose, Ifeoluwa Elizabeth Adegbaju, Temitayo Omosebi, Shakirat Oloruntoyin Ajenifujah-Solebo, Olaitan Yetunde Falana, Olufunke Bolatito Shittu, C. Adetunji, Olalekan Akinbo
Many African countries are unable to meet the food demands of their growing population and the situation is worsened by climate change and disease outbreaks. This issue of food insecurity may lead to a crisis of epic proportion if effective measures are not in place to make more food available. Thus, deploying biotechnology towards the improvement of existing crop varieties for tolerance or resistance to both biotic and abiotic stresses is crucial to increasing crop production. In order to optimize crop production, several African countries have implemented strategies to make the most of this innovative technology. For example, Nigerian government has implemented the National Biotechnology Policy to facilitate capacity building, research, bioresource development and commercialization of biotechnology products for over two decades. Several government ministries, research centers, universities, and agencies have worked together to implement the policy, resulting in the release of some genetically modified crops to farmers for cultivation and Commercialization, which is a significant accomplishment. However, the transgenic crops were only brought to Nigeria for confined field trials; the manufacturing of the transgenic crops took place outside the country. This may have contributed to the suspicion of pressure groups and embolden proponents of biotechnology as an alien technology. Likewise, this may also be the underlying issue preventing the adoption of biotechnology products in other African countries. It is therefore necessary that African universities develop capacity in various aspects of biotechnology, to continuously train indigenous scientists who can generate innovative ideas tailored towards solving problems that are peculiar to respective country. Therefore, this study intends to establish the role of genetic engineering and genome editing towards the achievement of food security in Africa while using Nigeria as a case study. In our opinion, biotechnology approaches will not only complement conventional breeding methods in the pursuit of crop improvements, but it remains a viable and sustainable means of tackling specific issues hindering optimal crop production. Furthermore, we suggest that financial institutions should offer low-interest loans to new businesses. In order to promote the growth of biotechnology products, especially through the creation of jobs and revenues through molecular farming.
{"title":"Genetic engineering and genome editing technologies as catalyst for Africa’s food security: the case of plant biotechnology in Nigeria","authors":"M. S. Adegbaju, Titilayo Ajose, Ifeoluwa Elizabeth Adegbaju, Temitayo Omosebi, Shakirat Oloruntoyin Ajenifujah-Solebo, Olaitan Yetunde Falana, Olufunke Bolatito Shittu, C. Adetunji, Olalekan Akinbo","doi":"10.3389/fgeed.2024.1398813","DOIUrl":"https://doi.org/10.3389/fgeed.2024.1398813","url":null,"abstract":"Many African countries are unable to meet the food demands of their growing population and the situation is worsened by climate change and disease outbreaks. This issue of food insecurity may lead to a crisis of epic proportion if effective measures are not in place to make more food available. Thus, deploying biotechnology towards the improvement of existing crop varieties for tolerance or resistance to both biotic and abiotic stresses is crucial to increasing crop production. In order to optimize crop production, several African countries have implemented strategies to make the most of this innovative technology. For example, Nigerian government has implemented the National Biotechnology Policy to facilitate capacity building, research, bioresource development and commercialization of biotechnology products for over two decades. Several government ministries, research centers, universities, and agencies have worked together to implement the policy, resulting in the release of some genetically modified crops to farmers for cultivation and Commercialization, which is a significant accomplishment. However, the transgenic crops were only brought to Nigeria for confined field trials; the manufacturing of the transgenic crops took place outside the country. This may have contributed to the suspicion of pressure groups and embolden proponents of biotechnology as an alien technology. Likewise, this may also be the underlying issue preventing the adoption of biotechnology products in other African countries. It is therefore necessary that African universities develop capacity in various aspects of biotechnology, to continuously train indigenous scientists who can generate innovative ideas tailored towards solving problems that are peculiar to respective country. Therefore, this study intends to establish the role of genetic engineering and genome editing towards the achievement of food security in Africa while using Nigeria as a case study. In our opinion, biotechnology approaches will not only complement conventional breeding methods in the pursuit of crop improvements, but it remains a viable and sustainable means of tackling specific issues hindering optimal crop production. Furthermore, we suggest that financial institutions should offer low-interest loans to new businesses. In order to promote the growth of biotechnology products, especially through the creation of jobs and revenues through molecular farming.","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141664011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-26eCollection Date: 2024-01-01DOI: 10.3389/fgeed.2024.1399051
Subaya Manzoor, Sajad Un Nabi, Tariq Rasool Rather, Gousia Gani, Zahoor Ahmad Mir, Ab Waheed Wani, Sajad Ali, Anshika Tyagi, Nazia Manzar
Modern agriculture has encountered several challenges in achieving constant yield stability especially due to disease outbreaks and lack of long-term disease-resistant crop cultivars. In the past, disease outbreaks in economically important crops had a major impact on food security and the economy. On the other hand climate-driven emergence of new pathovars or changes in their host specificity further poses a serious threat to sustainable agriculture. At present, chemical-based control strategies are frequently used to control microbial pathogens and pests, but they have detrimental impact on the environment and also resulted in the development of resistant phyto-pathogens. As a replacement, cultivating engineered disease-resistant crops can help to minimize the negative impact of regular pesticides on agriculture and the environment. Although traditional breeding and genetic engineering have been instrumental in crop disease improvement but they have certain limitations such as labour intensity, time consumption, and low efficiency. In this regard, genome editing has emerged as one of the potential tools for improving disease resistance in crops by targeting multiple traits with more accuracy and efficiency. For instance, genome editing techniques, such as CRISPR/Cas9, CRISPR/Cas13, base editing, TALENs, ZFNs, and meganucleases, have proved successful in improving disease resistance in crops through targeted mutagenesis, gene knockouts, knockdowns, modifications, and activation of target genes. CRISPR/Cas9 is unique among these techniques because of its remarkable efficacy, low risk of off-target repercussions, and ease of use. Some primary targets for developing CRISPR-mediated disease-resistant crops are host-susceptibility genes (the S gene method), resistance genes (R genes) and pathogen genetic material that prevents their development, broad-spectrum disease resistance. The use of genome editing methods has the potential to notably ameliorate crop disease resistance and transform agricultural practices in the future. This review highlights the impact of phyto-pathogens on agricultural productivity. Next, we discussed the tools for improving disease resistance while focusing on genome editing. We provided an update on the accomplishments of genome editing, and its potential to improve crop disease resistance against bacterial, fungal and viral pathogens in different crop systems. Finally, we highlighted the future challenges of genome editing in different crop systems for enhancing disease resistance.
{"title":"Advancing crop disease resistance through genome editing: a promising approach for enhancing agricultural production.","authors":"Subaya Manzoor, Sajad Un Nabi, Tariq Rasool Rather, Gousia Gani, Zahoor Ahmad Mir, Ab Waheed Wani, Sajad Ali, Anshika Tyagi, Nazia Manzar","doi":"10.3389/fgeed.2024.1399051","DOIUrl":"10.3389/fgeed.2024.1399051","url":null,"abstract":"<p><p>Modern agriculture has encountered several challenges in achieving constant yield stability especially due to disease outbreaks and lack of long-term disease-resistant crop cultivars. In the past, disease outbreaks in economically important crops had a major impact on food security and the economy. On the other hand climate-driven emergence of new pathovars or changes in their host specificity further poses a serious threat to sustainable agriculture. At present, chemical-based control strategies are frequently used to control microbial pathogens and pests, but they have detrimental impact on the environment and also resulted in the development of resistant phyto-pathogens. As a replacement, cultivating engineered disease-resistant crops can help to minimize the negative impact of regular pesticides on agriculture and the environment. Although traditional breeding and genetic engineering have been instrumental in crop disease improvement but they have certain limitations such as labour intensity, time consumption, and low efficiency. In this regard, genome editing has emerged as one of the potential tools for improving disease resistance in crops by targeting multiple traits with more accuracy and efficiency. For instance, genome editing techniques, such as CRISPR/Cas9, CRISPR/Cas13, base editing, TALENs, ZFNs, and meganucleases, have proved successful in improving disease resistance in crops through targeted mutagenesis, gene knockouts, knockdowns, modifications, and activation of target genes. CRISPR/Cas9 is unique among these techniques because of its remarkable efficacy, low risk of off-target repercussions, and ease of use. Some primary targets for developing CRISPR-mediated disease-resistant crops are host-susceptibility genes (the S gene method), resistance genes (R genes) and pathogen genetic material that prevents their development, broad-spectrum disease resistance. The use of genome editing methods has the potential to notably ameliorate crop disease resistance and transform agricultural practices in the future. This review highlights the impact of phyto-pathogens on agricultural productivity. Next, we discussed the tools for improving disease resistance while focusing on genome editing. We provided an update on the accomplishments of genome editing, and its potential to improve crop disease resistance against bacterial, fungal and viral pathogens in different crop systems. Finally, we highlighted the future challenges of genome editing in different crop systems for enhancing disease resistance.</p>","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11234172/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141581734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}