Development of stability, antioxidant, and antimicrobial properties of biopolymeric chitosan modified starch nanocapsules containing essential oil.

IF 1.8 4区 农林科学 Q3 CHEMISTRY, APPLIED Food Science and Technology International Pub Date : 2024-06-01 Epub Date: 2023-05-08 DOI:10.1177/10820132231168449
Maryam Hasani, Seyed Mahdi Ojagh, Mohammad Amir Hasani, Shirin Hasani
{"title":"Development of stability, antioxidant, and antimicrobial properties of biopolymeric chitosan modified starch nanocapsules containing essential oil.","authors":"Maryam Hasani, Seyed Mahdi Ojagh, Mohammad Amir Hasani, Shirin Hasani","doi":"10.1177/10820132231168449","DOIUrl":null,"url":null,"abstract":"<p><p>Lemon essential oil (LEOs) is used as a bioactive compound with unique health properties as a medicine or dietary supplement. Nevertheless, essential oils are chemical compounds sensitive to light, oxidation, and thermal processes. Therefore, encapsulation technique can be a good way to protect them from degradation and evaporation. In current study, biopolymeric nanocapsules containing lemon essential oils (LEOs) were prepared by the emulsion method. The nanocapsules were characterized by their particle size and Encapsulation efficiency (%) ranged from 339.3 to 553.3 nm and 68.09% to 85.43%, respectively. Long-term storage (30 days) under different temperatures (4 °C, 25 °C, and 40 °C) conditions showed that nanocapsules stored at 4 °C were more stable than samples stored at higher temperatures. DPPH and ABTS free radical scavenging activity were measured to evaluate the values of antioxidant activity of LEOs and nanocapsules. The free LEO and nanocapsules were investigated for its antibacterial activity against common Gram-positive and Gram-negative pathogenic microorganisms (<i>Staphylococcus aureus</i> and <i>Escherichia coli</i>) using disk diffusion followed by the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Our results indicated that the encapsulated LEOs had a significant antioxidant and antibacterial activities, as compared to the free LEO. The LEOs nanocapsules in CS and Hicap can be suggested as an important natural alternative with suitable stability, antioxidant, and antibacterial properties to overcome the challenges associated with the direct application of these bioactive compounds in food.</p>","PeriodicalId":12331,"journal":{"name":"Food Science and Technology International","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science and Technology International","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1177/10820132231168449","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Lemon essential oil (LEOs) is used as a bioactive compound with unique health properties as a medicine or dietary supplement. Nevertheless, essential oils are chemical compounds sensitive to light, oxidation, and thermal processes. Therefore, encapsulation technique can be a good way to protect them from degradation and evaporation. In current study, biopolymeric nanocapsules containing lemon essential oils (LEOs) were prepared by the emulsion method. The nanocapsules were characterized by their particle size and Encapsulation efficiency (%) ranged from 339.3 to 553.3 nm and 68.09% to 85.43%, respectively. Long-term storage (30 days) under different temperatures (4 °C, 25 °C, and 40 °C) conditions showed that nanocapsules stored at 4 °C were more stable than samples stored at higher temperatures. DPPH and ABTS free radical scavenging activity were measured to evaluate the values of antioxidant activity of LEOs and nanocapsules. The free LEO and nanocapsules were investigated for its antibacterial activity against common Gram-positive and Gram-negative pathogenic microorganisms (Staphylococcus aureus and Escherichia coli) using disk diffusion followed by the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Our results indicated that the encapsulated LEOs had a significant antioxidant and antibacterial activities, as compared to the free LEO. The LEOs nanocapsules in CS and Hicap can be suggested as an important natural alternative with suitable stability, antioxidant, and antibacterial properties to overcome the challenges associated with the direct application of these bioactive compounds in food.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开发含有精油的生物聚合物壳聚糖改性淀粉纳米胶囊的稳定性、抗氧化性和抗菌性。
柠檬精油(LEOs)是一种生物活性化合物,具有独特的保健特性,可用作药物或膳食补充剂。然而,精油是一种对光、氧化和热过程敏感的化合物。因此,封装技术可以很好地保护精油不被降解和蒸发。本研究采用乳液法制备了含有柠檬精油(LEOs)的生物聚合物纳米胶囊。纳米胶囊的粒径和封装效率(%)分别为 339.3 至 553.3 nm 和 68.09% 至 85.43%。在不同温度(4°C、25°C 和 40°C)条件下的长期储存(30 天)表明,4°C 下储存的纳米胶囊比高温下储存的样品更稳定。通过测定 DPPH 和 ABTS 自由基清除活性来评估 LEOs 和纳米胶囊的抗氧化活性值。采用盘扩散法研究了游离 LEO 和纳米胶囊对常见革兰氏阳性和革兰氏阴性病原微生物(金黄色葡萄球菌和大肠杆菌)的抗菌活性,然后测定了最低抑菌浓度(MIC)和最低杀菌浓度(MBC)。结果表明,与游离 LEO 相比,封装 LEO 具有显著的抗氧化和抗菌活性。CS 和 Hicap 中的 LEOs 纳米胶囊具有适当的稳定性、抗氧化性和抗菌性,可作为一种重要的天然替代品,以克服在食品中直接应用这些生物活性化合物所面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Food Science and Technology International
Food Science and Technology International 工程技术-食品科技
CiteScore
5.80
自引率
4.30%
发文量
63
审稿时长
18-36 weeks
期刊介绍: Food Science and Technology International (FSTI) shares knowledge from leading researchers of food science and technology. Covers food processing and engineering, food safety and preservation, food biotechnology, and physical, chemical and sensory properties of foods. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Preparation and nutritional characterisation of protein concentrate prepared from foxtail millet (Setaria italica). Characterization and qualitative evaluation of cassava starch-chitosan edible food wrap enriched with culinary leaf powders for eco-friendly food packaging applications. Influence of hydrocolloids and natural emulsifier in the physical stability of UHT oat beverage. Assessment of physicochemical parameters, bioactive compounds, biological activities, and nutritional value of the most two commercialized pollen types of date palm (Phoenix dactylifera L.) in Morocco. Production of fermented milk analogs using subcritical water extraction of rice by-products and investigation of its physicochemical, microbial, rheological, and sensory properties.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1