Evidence for electrical synapses between neurons of the nucleus reticularis thalami in the adult brain in vitro.

Kate L Blethyn, Stuart W Hughes, Vincenzo Crunelli
{"title":"Evidence for electrical synapses between neurons of the nucleus reticularis thalami in the adult brain in vitro.","authors":"Kate L Blethyn,&nbsp;Stuart W Hughes,&nbsp;Vincenzo Crunelli","doi":"10.1017/S1472928807000325","DOIUrl":null,"url":null,"abstract":"<p><p>It has been conclusively demonstrated in juvenile rodents that the inhibitory neurons of the nucleus reticularis thalami (NRT) communicate with each other via connexin 36 (Cx36)-based electrical synapses. However, whether functional electrical synapses persist into adulthood is not fully known. Here we show that in the presence of the metabotropic glutamate receptor (mGluR) agonists, trans-ACPD (100 muM) or DHPG (100 muM), 15% of neurons in slices of the adult cat NRT maintained in vitro exhibit stereotypical spikelets with several properties that indicate that they reflect action potentials that have been communicated through an electrical synapse. In particular, these spikelets, i) display a conserved all-or-nothing waveform with a pronounced after-hyperpolarization (AHP), ii) exhibit an amplitude and time to peak that are unaffected by changes in membrane potential, iii) always occur rhythmically with the precise frequency increasing with depolarization, and iv) are resistant to blockers of conventional, fast chemical synaptic transmission. Thus, these results indicate that functional electrical synapses in the NRT persist into adulthood where they are likely to serve as an effective synchronizing mechanism for the wide variety of physiological and pathological rhythmic activities displayed by this nucleus.</p>","PeriodicalId":74923,"journal":{"name":"Thalamus & related systems","volume":"4 1","pages":"13-20"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S1472928807000325","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thalamus & related systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S1472928807000325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

It has been conclusively demonstrated in juvenile rodents that the inhibitory neurons of the nucleus reticularis thalami (NRT) communicate with each other via connexin 36 (Cx36)-based electrical synapses. However, whether functional electrical synapses persist into adulthood is not fully known. Here we show that in the presence of the metabotropic glutamate receptor (mGluR) agonists, trans-ACPD (100 muM) or DHPG (100 muM), 15% of neurons in slices of the adult cat NRT maintained in vitro exhibit stereotypical spikelets with several properties that indicate that they reflect action potentials that have been communicated through an electrical synapse. In particular, these spikelets, i) display a conserved all-or-nothing waveform with a pronounced after-hyperpolarization (AHP), ii) exhibit an amplitude and time to peak that are unaffected by changes in membrane potential, iii) always occur rhythmically with the precise frequency increasing with depolarization, and iv) are resistant to blockers of conventional, fast chemical synaptic transmission. Thus, these results indicate that functional electrical synapses in the NRT persist into adulthood where they are likely to serve as an effective synchronizing mechanism for the wide variety of physiological and pathological rhythmic activities displayed by this nucleus.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
成人体外丘脑网状核神经元间电突触的证据。
幼鼠丘脑网状核(NRT)的抑制性神经元通过连接蛋白36 (Cx36)的电突触相互沟通。然而,功能性电突触是否会持续到成年还不完全清楚。本研究表明,在代谢性谷氨酸受体(mGluR)激动剂、反式acpd (100 muM)或DHPG (100 muM)存在的情况下,体外维持的成年猫NRT细胞中15%的神经元表现出典型的小穗,这些小穗具有几种特性,表明它们反映了通过电突触传递的动作电位。特别是,这些小穗,1)显示出一个保守的全有或无的波形,具有明显的后超极化(AHP), 2)显示出不受膜电位变化影响的振幅和峰值时间,3)总是有节奏地发生,精确的频率随着去极化而增加,4)抵抗传统的快速化学突触传递阻滞剂。因此,这些结果表明,NRT中的功能性电突触持续存在到成年期,它们可能作为一种有效的同步机制,为该核显示的各种生理和病理节律活动提供支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evidence for electrical synapses between neurons of the nucleus reticularis thalami in the adult brain in vitro. Anterior thalamic lesions produce chronic and profuse transcriptional de-regulation in retrosplenial cortex: A model of retrosplenial hypoactivity and covert pathology. Visual stimuli modulate precise synchronous firing within the thalamus. Interaction between neocortical and hippocampal networks via slow oscillations. REORGANIZATION OF BARREL CIRCUITS LEADS TO THALAMICALLY-EVOKED CORTICAL EPILEPTIFORM ACTIVITY.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1