{"title":"Production of WE43 magnesium alloy by powder metallurgy and the effect of glucose on wear resistance in biocorrosive wear.","authors":"Bünyamin Çiçek","doi":"10.1116/6.0002270","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, WE43 magnesium alloy was produced by the powder metallurgy method. Microstructural analyses of the produced samples were carried out using the scanning electron microscopy method. X-ray fluorescence, energy dispersive x-ray (EDS) analysis, and hardness tests were also implemented to investigate the physical and chemical properties of the alloys. The volumetric hardness was measured to be approximately 53 HV. The microstructural analysis and EDS results indicated the presence of Mg24Y5 and Mg41Nd5 phases in the alloys. Reciprocating-type experiments were carried out in dry and corrosive environments to evaluate the wear resistance. Hanks's solution containing 2% g/l glucose was used as the corrosive environment. Gluconic acid resulting from the oxidation of glucose in the Hanks's solution formed a new thin layer on the alloy surface, which was observed in the worn surface images. The formation of the thin film on the alloy surface resulted in an increase in wear resistance by 37%. The results unraveled the potential of the WE43 alloys as implant materials in areas in contact with glucose.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0002270","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, WE43 magnesium alloy was produced by the powder metallurgy method. Microstructural analyses of the produced samples were carried out using the scanning electron microscopy method. X-ray fluorescence, energy dispersive x-ray (EDS) analysis, and hardness tests were also implemented to investigate the physical and chemical properties of the alloys. The volumetric hardness was measured to be approximately 53 HV. The microstructural analysis and EDS results indicated the presence of Mg24Y5 and Mg41Nd5 phases in the alloys. Reciprocating-type experiments were carried out in dry and corrosive environments to evaluate the wear resistance. Hanks's solution containing 2% g/l glucose was used as the corrosive environment. Gluconic acid resulting from the oxidation of glucose in the Hanks's solution formed a new thin layer on the alloy surface, which was observed in the worn surface images. The formation of the thin film on the alloy surface resulted in an increase in wear resistance by 37%. The results unraveled the potential of the WE43 alloys as implant materials in areas in contact with glucose.
期刊介绍:
Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee.
Topics include:
bio-surface modification
nano-bio interface
protein-surface interactions
cell-surface interactions
in vivo and in vitro systems
biofilms / biofouling
biosensors / biodiagnostics
bio on a chip
coatings
interface spectroscopy
biotribology / biorheology
molecular recognition
ambient diagnostic methods
interface modelling
adhesion phenomena.