Integrated multi-omics analysis reveals drought stress response mechanism in chickpea (Cicer arietinum L.).

IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY Plant Genome Pub Date : 2024-03-01 Epub Date: 2023-05-10 DOI:10.1002/tpg2.20337
Himabindu Kudapa, Arindam Ghatak, Rutwik Barmukh, Palak Chaturvedi, Aamir Khan, Sandip Kale, Lena Fragner, Annapurna Chitikineni, Wolfram Weckwerth, Rajeev K Varshney
{"title":"Integrated multi-omics analysis reveals drought stress response mechanism in chickpea (Cicer arietinum L.).","authors":"Himabindu Kudapa, Arindam Ghatak, Rutwik Barmukh, Palak Chaturvedi, Aamir Khan, Sandip Kale, Lena Fragner, Annapurna Chitikineni, Wolfram Weckwerth, Rajeev K Varshney","doi":"10.1002/tpg2.20337","DOIUrl":null,"url":null,"abstract":"<p><p>Drought is one of the major constraints limiting chickpea productivity. To unravel complex mechanisms regulating drought response in chickpea, we generated transcriptomics, proteomics, and metabolomics datasets from root tissues of four contrasting drought-responsive chickpea genotypes: ICC 4958, JG 11, and JG 11+ (drought-tolerant), and ICC 1882 (drought-sensitive) under control and drought stress conditions. Integration of transcriptomics and proteomics data identified enriched hub proteins encoding isoflavone 4'-O-methyltransferase, UDP-d-glucose/UDP-d-galactose 4-epimerase, and delta-1-pyrroline-5-carboxylate synthetase. These proteins highlighted the involvement of pathways such as antibiotic biosynthesis, galactose metabolism, and isoflavonoid biosynthesis in activating drought stress response mechanisms. Subsequently, the integration of metabolomics data identified six metabolites (fructose, galactose, glucose, myoinositol, galactinol, and raffinose) that showed a significant correlation with galactose metabolism. Integration of root-omics data also revealed some key candidate genes underlying the drought-responsive \"QTL-hotspot\" region. These results provided key insights into complex molecular mechanisms underlying drought stress response in chickpea.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/tpg2.20337","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Drought is one of the major constraints limiting chickpea productivity. To unravel complex mechanisms regulating drought response in chickpea, we generated transcriptomics, proteomics, and metabolomics datasets from root tissues of four contrasting drought-responsive chickpea genotypes: ICC 4958, JG 11, and JG 11+ (drought-tolerant), and ICC 1882 (drought-sensitive) under control and drought stress conditions. Integration of transcriptomics and proteomics data identified enriched hub proteins encoding isoflavone 4'-O-methyltransferase, UDP-d-glucose/UDP-d-galactose 4-epimerase, and delta-1-pyrroline-5-carboxylate synthetase. These proteins highlighted the involvement of pathways such as antibiotic biosynthesis, galactose metabolism, and isoflavonoid biosynthesis in activating drought stress response mechanisms. Subsequently, the integration of metabolomics data identified six metabolites (fructose, galactose, glucose, myoinositol, galactinol, and raffinose) that showed a significant correlation with galactose metabolism. Integration of root-omics data also revealed some key candidate genes underlying the drought-responsive "QTL-hotspot" region. These results provided key insights into complex molecular mechanisms underlying drought stress response in chickpea.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多组学综合分析揭示鹰嘴豆(Cicer arietinum L. )的干旱胁迫响应机制
干旱是限制鹰嘴豆产量的主要因素之一。为了揭示调控鹰嘴豆干旱响应的复杂机制,我们从四种对立的干旱响应鹰嘴豆基因型的根组织中生成了转录组学、蛋白质组学和代谢组学数据集:ICC 4958、JG 11 和 JG 11+(耐旱)以及 ICC 1882(干旱敏感)在对照和干旱胁迫条件下的根组织。通过整合转录组学和蛋白质组学数据,发现了编码异黄酮 4'-O-甲基转移酶、UDP-d-葡萄糖/UDP-d-半乳糖 4-epimerase、δ-1-吡咯啉-5-羧酸合成酶的富集中心蛋白。这些蛋白质突显了抗生素生物合成、半乳糖代谢和异黄酮生物合成等途径参与激活干旱胁迫响应机制。随后,通过整合代谢组学数据,发现了六种代谢物(果糖、半乳糖、葡萄糖、肌醇、半乳糖苷醇和棉子糖)与半乳糖代谢有显著相关性。根组学数据的整合还揭示了干旱响应 "QTL-热点 "区域的一些关键候选基因。这些结果为深入了解鹰嘴豆干旱胁迫响应的复杂分子机制提供了重要信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Genome
Plant Genome PLANT SCIENCES-GENETICS & HEREDITY
CiteScore
6.00
自引率
4.80%
发文量
93
审稿时长
>12 weeks
期刊介绍: The Plant Genome publishes original research investigating all aspects of plant genomics. Technical breakthroughs reporting improvements in the efficiency and speed of acquiring and interpreting plant genomics data are welcome. The editorial board gives preference to novel reports that use innovative genomic applications that advance our understanding of plant biology that may have applications to crop improvement. The journal also publishes invited review articles and perspectives that offer insight and commentary on recent advances in genomics and their potential for agronomic improvement.
期刊最新文献
Identification of the sweet orange (Citrus sinensis) bHLH gene family and the role of CsbHLH55 and CsbHLH87 in regulating salt stress. Genome-wide analysis of HD-Zip genes in Sophora alopecuroides and their role in salt stress response. Improving complex agronomic and domestication traits in the perennial grain crop intermediate wheatgrass with genetic mapping and genomic prediction. Chromosome-scale Salvia hispanica L. (Chia) genome assembly reveals rampant Salvia interspecies introgression. Elucidation of the genetic architecture of water absorption capacity in hard winter wheat through genome wide association study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1