{"title":"Neural substrates of perception in the vestibular thalamus during natural self-motion: A review","authors":"Kathleen E. Cullen , Maurice J. Chacron","doi":"10.1016/j.crneur.2023.100073","DOIUrl":null,"url":null,"abstract":"<div><p>Accumulating evidence across multiple sensory modalities suggests that the thalamus does not simply relay information from the periphery to the cortex. Here we review recent findings showing that vestibular neurons within the ventral posteriolateral area of the thalamus perform nonlinear transformations on their afferent input that determine our subjective awareness of motion. Specifically, these neurons provide a substrate for previous psychophysical observations that perceptual discrimination thresholds are much better than predictions from Weber's law. This is because neural discrimination thresholds, which are determined from both variability and sensitivity, initially increase but then saturate with increasing stimulus amplitude, thereby matching the previously observed dependency of perceptual self-motion discrimination thresholds. Moreover, neural response dynamics give rise to unambiguous and optimized encoding of natural but not artificial stimuli. Finally, vestibular thalamic neurons selectively encode passively applied motion when occurring concurrently with voluntary (i.e., active) movements. Taken together, these results show that the vestibular thalamus plays an essential role towards generating motion perception as well as shaping our vestibular sense of agency that is not simply inherited from afferent input.</p></div>","PeriodicalId":72752,"journal":{"name":"Current research in neurobiology","volume":"4 ","pages":"Article 100073"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10011815/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current research in neurobiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665945X23000013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Accumulating evidence across multiple sensory modalities suggests that the thalamus does not simply relay information from the periphery to the cortex. Here we review recent findings showing that vestibular neurons within the ventral posteriolateral area of the thalamus perform nonlinear transformations on their afferent input that determine our subjective awareness of motion. Specifically, these neurons provide a substrate for previous psychophysical observations that perceptual discrimination thresholds are much better than predictions from Weber's law. This is because neural discrimination thresholds, which are determined from both variability and sensitivity, initially increase but then saturate with increasing stimulus amplitude, thereby matching the previously observed dependency of perceptual self-motion discrimination thresholds. Moreover, neural response dynamics give rise to unambiguous and optimized encoding of natural but not artificial stimuli. Finally, vestibular thalamic neurons selectively encode passively applied motion when occurring concurrently with voluntary (i.e., active) movements. Taken together, these results show that the vestibular thalamus plays an essential role towards generating motion perception as well as shaping our vestibular sense of agency that is not simply inherited from afferent input.