Blanca Fernández-Eslava, Alejandro Cantarero, Daniel Alonso, Carlos Alonso-Alvarez
{"title":"Wild common crossbills produce redder body feathers when their wings are clipped.","authors":"Blanca Fernández-Eslava, Alejandro Cantarero, Daniel Alonso, Carlos Alonso-Alvarez","doi":"10.1186/s40850-022-00150-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The animal signaling theory posits that conspicuous colorations exhibited by many animals have evolved as reliable signals of individual quality. Red carotenoid-based ornaments may depend on enzymatic transformations (oxidation) of dietary yellow carotenoids, which could occur in the inner mitochondrial membrane (IMM). Thus, carotenoid ketolation and cell respiration could share the same biochemical pathways. Accordingly, the level of trait expression (redness) would directly reveal the efficiency of individuals' metabolism and, hence, the bearer quality in an unfalsifiable way. Different avian studies have described that the flying effort may induce oxidative stress. A redox metabolism modified during the flight could thus influence the carotenoid conversion rate and, ultimately, animal coloration. Here, we aimed to infer the link between red carotenoid-based ornament expression and flight metabolism by increasing flying effort in wild male common crossbills Loxia curvirostra (Linnaeus). In this order, 295 adult males were captured with mist nets in an Iberian population during winter. Approximately half of the birds were experimentally handicapped through wing feather clipping to increase their flying effort, the other half being used as a control group. To stimulate the plumage regrown of a small surface during a short time-lapse, we also plucked the rump feathers from all the birds.</p><p><strong>Results: </strong>A fraction of the birds with fully grown rump feathers (34 individuals) could be recaptured during the subsequent weeks. We did not detect any significant bias in recovery rates and morphological variables in this reduced subsample. However, among recaptured birds, individuals with experimentally impaired flying capacity showed body mass loss, whereas controls showed a trend to increase their weight. Moreover, clipped males showed redder feathers in the newly regrown rump area compared to controls.</p><p><strong>Conclusions: </strong>The results suggest that wing-clipped individuals could have endured higher energy expenditure as they lost body mass. Despite the small sample size, the difference in plumage redness between the two experimental groups would support the hypothesis that the flying metabolism may influence the redox enzymatic reactions required for converting yellow dietary carotenoids to red ketocarotenoids.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10127331/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40850-022-00150-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Background: The animal signaling theory posits that conspicuous colorations exhibited by many animals have evolved as reliable signals of individual quality. Red carotenoid-based ornaments may depend on enzymatic transformations (oxidation) of dietary yellow carotenoids, which could occur in the inner mitochondrial membrane (IMM). Thus, carotenoid ketolation and cell respiration could share the same biochemical pathways. Accordingly, the level of trait expression (redness) would directly reveal the efficiency of individuals' metabolism and, hence, the bearer quality in an unfalsifiable way. Different avian studies have described that the flying effort may induce oxidative stress. A redox metabolism modified during the flight could thus influence the carotenoid conversion rate and, ultimately, animal coloration. Here, we aimed to infer the link between red carotenoid-based ornament expression and flight metabolism by increasing flying effort in wild male common crossbills Loxia curvirostra (Linnaeus). In this order, 295 adult males were captured with mist nets in an Iberian population during winter. Approximately half of the birds were experimentally handicapped through wing feather clipping to increase their flying effort, the other half being used as a control group. To stimulate the plumage regrown of a small surface during a short time-lapse, we also plucked the rump feathers from all the birds.
Results: A fraction of the birds with fully grown rump feathers (34 individuals) could be recaptured during the subsequent weeks. We did not detect any significant bias in recovery rates and morphological variables in this reduced subsample. However, among recaptured birds, individuals with experimentally impaired flying capacity showed body mass loss, whereas controls showed a trend to increase their weight. Moreover, clipped males showed redder feathers in the newly regrown rump area compared to controls.
Conclusions: The results suggest that wing-clipped individuals could have endured higher energy expenditure as they lost body mass. Despite the small sample size, the difference in plumage redness between the two experimental groups would support the hypothesis that the flying metabolism may influence the redox enzymatic reactions required for converting yellow dietary carotenoids to red ketocarotenoids.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.