Robert Ewing, Ben Brokesh, Phillip Shults, Lee W Cohnstaedt
{"title":"Are You Still Using 6-Volt Batteries for Your Insect Traps?","authors":"Robert Ewing, Ben Brokesh, Phillip Shults, Lee W Cohnstaedt","doi":"10.2987/22-7061","DOIUrl":null,"url":null,"abstract":"<p><p>The most prevalent insect sampling and surveillance problem is powering insect traps in the field. Most modern light traps use 6-V power supplies such as the Centers for Disease Control and Prevention (CDC) suction trap. Buck converter modules efficiently reduce 12-V direct current power to 6-V, which permits the use of higher voltage batteries with lower voltage traps, resulting in longer operational duration and reduced labor requirements associated with replacing and recharging batteries in the field. We evaluated several battery configurations of 6- and 12-V lead-acid batteries in various sizes (10-20 ampere-hours) and addressed, in the circuit design, common problems that occur when using the buck converter (such as crossing polarity and excessive battery depletion). The efficacy of each configuration was assessed by measuring the voltage and suction while powering a 6-V CDC light trap. The buck converter permitted the use of cheaper and more commonly available 12-V batteries to run the CDC light traps and resulted in longer effective operation time as measured by air speed.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.2987/22-7061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The most prevalent insect sampling and surveillance problem is powering insect traps in the field. Most modern light traps use 6-V power supplies such as the Centers for Disease Control and Prevention (CDC) suction trap. Buck converter modules efficiently reduce 12-V direct current power to 6-V, which permits the use of higher voltage batteries with lower voltage traps, resulting in longer operational duration and reduced labor requirements associated with replacing and recharging batteries in the field. We evaluated several battery configurations of 6- and 12-V lead-acid batteries in various sizes (10-20 ampere-hours) and addressed, in the circuit design, common problems that occur when using the buck converter (such as crossing polarity and excessive battery depletion). The efficacy of each configuration was assessed by measuring the voltage and suction while powering a 6-V CDC light trap. The buck converter permitted the use of cheaper and more commonly available 12-V batteries to run the CDC light traps and resulted in longer effective operation time as measured by air speed.