BIBSNet: A Deep Learning Baby Image Brain Segmentation Network for MRI Scans.

Timothy J Hendrickson, Paul Reiners, Lucille A Moore, Jacob T Lundquist, Begim Fayzullobekova, Anders J Perrone, Erik G Lee, Julia Moser, Trevor K M Day, Dimitrios Alexopoulos, Martin Styner, Omid Kardan, Taylor A Chamberlain, Anurima Mummaneni, Henrique A Caldas, Brad Bower, Sally Stoyell, Tabitha Martin, Sooyeon Sung, Ermias A Fair, Kenevan Carter, Jonathan Uriarte-Lopez, Amanda R Rueter, Essa Yacoub, Monica D Rosenberg, Christopher D Smyser, Jed T Elison, Alice Graham, Damien A Fair, Eric Feczko
{"title":"BIBSNet: A Deep Learning Baby Image Brain Segmentation Network for MRI Scans.","authors":"Timothy J Hendrickson, Paul Reiners, Lucille A Moore, Jacob T Lundquist, Begim Fayzullobekova, Anders J Perrone, Erik G Lee, Julia Moser, Trevor K M Day, Dimitrios Alexopoulos, Martin Styner, Omid Kardan, Taylor A Chamberlain, Anurima Mummaneni, Henrique A Caldas, Brad Bower, Sally Stoyell, Tabitha Martin, Sooyeon Sung, Ermias A Fair, Kenevan Carter, Jonathan Uriarte-Lopez, Amanda R Rueter, Essa Yacoub, Monica D Rosenberg, Christopher D Smyser, Jed T Elison, Alice Graham, Damien A Fair, Eric Feczko","doi":"10.1101/2023.03.22.533696","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Brain segmentation of infant magnetic resonance (MR) images is vitally important for studying typical and atypical brain development. The infant brain undergoes many changes throughout the first years of postnatal life, making tissue segmentation difficult for most existing algorithms. Here we introduce a deep neural network BIBSNet ( <b>B</b> aby and <b>I</b> nfant <b>B</b> rain <b>S</b> egmentation Neural <b>Net</b> work), an open-source, community-driven model for robust and generalizable brain segmentation leveraging data augmentation and a large sample size of manually annotated images.</p><p><strong>Experimental design: </strong>Included in model training and testing were MR brain images from 90 participants with an age range of 0-8 months (median age 4.6 months). Using the BOBs repository of manually annotated real images along with synthetic segmentation images produced using SynthSeg, the model was trained using a 10-fold procedure. Model performance of segmentations was assessed by comparing BIBSNet, joint label fusion (JLF) inferred segmentation to ground truth segmentations using Dice Similarity Coefficient (DSC). Additionally, MR data along with the FreeSurfer compatible segmentations were processed with the DCAN labs infant-ABCD-BIDS processing pipeline from ground truth, JLF, and BIBSNet to further assess model performance on derivative data, including cortical thickness, resting state connectivity and brain region volumes.</p><p><strong>Principal observations: </strong>BIBSNet segmentations outperforms JLF across all regions based on DSC comparisons. Additionally, with processed derived metrics, BIBSNet segmentations outperforms JLF segmentations across nearly all metrics.</p><p><strong>Conclusions: </strong>BIBSNet segmentation shows marked improvement over JLF across all age groups analyzed. The BIBSNet model is 600x faster compared to JLF, produces FreeSurfer-compatible segmentation labels, and can be easily included in other processing pipelines. BIBSNet provides a viable alternative for segmenting the brain in the earliest stages of development.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055337/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.03.22.533696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Brain segmentation of infant magnetic resonance (MR) images is vitally important for studying typical and atypical brain development. The infant brain undergoes many changes throughout the first years of postnatal life, making tissue segmentation difficult for most existing algorithms. Here we introduce a deep neural network BIBSNet ( B aby and I nfant B rain S egmentation Neural Net work), an open-source, community-driven model for robust and generalizable brain segmentation leveraging data augmentation and a large sample size of manually annotated images.

Experimental design: Included in model training and testing were MR brain images from 90 participants with an age range of 0-8 months (median age 4.6 months). Using the BOBs repository of manually annotated real images along with synthetic segmentation images produced using SynthSeg, the model was trained using a 10-fold procedure. Model performance of segmentations was assessed by comparing BIBSNet, joint label fusion (JLF) inferred segmentation to ground truth segmentations using Dice Similarity Coefficient (DSC). Additionally, MR data along with the FreeSurfer compatible segmentations were processed with the DCAN labs infant-ABCD-BIDS processing pipeline from ground truth, JLF, and BIBSNet to further assess model performance on derivative data, including cortical thickness, resting state connectivity and brain region volumes.

Principal observations: BIBSNet segmentations outperforms JLF across all regions based on DSC comparisons. Additionally, with processed derived metrics, BIBSNet segmentations outperforms JLF segmentations across nearly all metrics.

Conclusions: BIBSNet segmentation shows marked improvement over JLF across all age groups analyzed. The BIBSNet model is 600x faster compared to JLF, produces FreeSurfer-compatible segmentation labels, and can be easily included in other processing pipelines. BIBSNet provides a viable alternative for segmenting the brain in the earliest stages of development.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BIBSNet:一个用于MRI扫描的深度学习婴儿图像大脑分割网络。
目的:婴儿磁共振(MR)图像的大脑分割在研究发育性心理健康和疾病方面至关重要。婴儿大脑在出生后的头几年经历了许多变化,这使得大多数现有算法难以进行组织分割。在这里,我们介绍了一个深度神经网络BIBSNet(婴儿和婴儿大脑分割神经网络),这是一个开源的社区驱动模型,依赖于数据增强和大量手动注释图像的样本量,以促进生成稳健和可推广的大脑分割。实验设计:模型训练和测试包括84名年龄在0-8个月(月经后中位年龄为13.57个月)的参与者的MR大脑图像。使用手动注释的真实和合成分割图像,使用10倍交叉验证程序对模型进行训练。使用金标准手动注释、联合标签融合(JLF)和BIBSNet生成的分割,对DCAN实验室婴儿ABCD BIDS处理管道处理的MRI数据进行测试,以评估模型性能。主要观察结果:使用组分析,结果表明使用BIBSNet分割产生的皮层指标优于JLF分割。此外,在分析个体差异时,BIBSNet分割的表现甚至更好。结论:在所分析的所有年龄组中,BIBSNet分割比JLF分割显示出显著的改进。与JLF相比,BIBSNet模型的速度快了600倍,并且可以很容易地包含在其他处理管道中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-supervised segmentation and characterization of fiber bundles in anatomic tracing data. Single neuron contributions to the auditory brainstem EEG. Neural substrates of cold nociception in Drosophila larva. Inversions Can Accumulate Balanced Sexual Antagonism: Evidence from Simulations and Drosophila Experiments. Programming megakaryocytes to produce engineered platelets for delivering non-native proteins.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1