Improving marginal hazard ratio estimation using quadratic inference functions.

IF 1.2 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Lifetime Data Analysis Pub Date : 2023-10-01 Epub Date: 2023-05-07 DOI:10.1007/s10985-023-09598-4
Hongkai Liang, Xiaoguang Wang, Yingwei Peng, Yi Niu
{"title":"Improving marginal hazard ratio estimation using quadratic inference functions.","authors":"Hongkai Liang,&nbsp;Xiaoguang Wang,&nbsp;Yingwei Peng,&nbsp;Yi Niu","doi":"10.1007/s10985-023-09598-4","DOIUrl":null,"url":null,"abstract":"<p><p>Clustered and multivariate failure time data are commonly encountered in biomedical studies and a marginal regression approach is often employed to identify the potential risk factors of a failure. We consider a semiparametric marginal Cox proportional hazards model for right-censored survival data with potential correlation. We propose to use a quadratic inference function method based on the generalized method of moments to obtain the optimal hazard ratio estimators. The inverse of the working correlation matrix is represented by the linear combination of basis matrices in the context of the estimating equation. We investigate the asymptotic properties of the regression estimators from the proposed method. The optimality of the hazard ratio estimators is discussed. Our simulation study shows that the estimator from the quadratic inference approach is more efficient than those from existing estimating equation methods whether the working correlation structure is correctly specified or not. Finally, we apply the model and the proposed estimation method to analyze a study of tooth loss and have uncovered new insights that were previously inaccessible using existing methods.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":" ","pages":"823-853"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-023-09598-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Clustered and multivariate failure time data are commonly encountered in biomedical studies and a marginal regression approach is often employed to identify the potential risk factors of a failure. We consider a semiparametric marginal Cox proportional hazards model for right-censored survival data with potential correlation. We propose to use a quadratic inference function method based on the generalized method of moments to obtain the optimal hazard ratio estimators. The inverse of the working correlation matrix is represented by the linear combination of basis matrices in the context of the estimating equation. We investigate the asymptotic properties of the regression estimators from the proposed method. The optimality of the hazard ratio estimators is discussed. Our simulation study shows that the estimator from the quadratic inference approach is more efficient than those from existing estimating equation methods whether the working correlation structure is correctly specified or not. Finally, we apply the model and the proposed estimation method to analyze a study of tooth loss and have uncovered new insights that were previously inaccessible using existing methods.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用二次推理函数改进边际风险比估计。
生物医学研究中通常会遇到聚类和多变量的失败时间数据,通常使用边际回归方法来确定失败的潜在风险因素。我们考虑了具有潜在相关性的右删失生存数据的半参数边际Cox比例风险模型。我们建议使用基于广义矩方法的二次推理函数方法来获得最优风险比估计量。工作相关矩阵的逆由估计方程中的基矩阵的线性组合表示。我们从所提出的方法中研究了回归估计量的渐近性质。讨论了风险比估计的最优性。我们的仿真研究表明,无论工作相关结构是否正确指定,二次推理方法的估计器都比现有的估计方程方法的估计器更有效。最后,我们将该模型和所提出的估计方法应用于牙齿缺失的研究,并发现了以前使用现有方法无法获得的新见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
相关文献
Predicting weakly stable regions, oligomerization state, and protein-protein interfaces in transmembrane domains of outer membrane proteins.
IF 11.1 1区 化学ACS Catalysis Pub Date : 2009-08-04 DOI: 10.1073/pnas.0902169106
Hammad Naveed, Ronald Jackups, Jie Liang
Oligomerization and its Effect on Function in 7-Transmembrane Proteins
IF 3.4 3区 生物学Biophysical journalPub Date : 2013-01-29 DOI: 10.1016/J.BPJ.2012.11.2264
M. Kinnebrew, Sunyia Hussain, Songi Han
An analysis of oligomerization interfaces in transmembrane proteins
IF 0 BMC Structural BiologyPub Date : 2013-10-17 DOI: 10.1186/1472-6807-13-21
Jose M Duarte, Nikhil Biyani, Kumaran Baskaran, Guido Capitani
来源期刊
Lifetime Data Analysis
Lifetime Data Analysis 数学-数学跨学科应用
CiteScore
2.30
自引率
7.70%
发文量
43
审稿时长
3 months
期刊介绍: The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.
期刊最新文献
A pairwise pseudo-likelihood approach for regression analysis of doubly truncated data. Quantile regression under dependent censoring with unknown association. Goodness-of-fit testing in the presence of cured data: IPCW approach. Conditional modeling of recurrent event data with terminal event. Evaluating time-to-event surrogates for time-to-event true endpoints: an information-theoretic approach based on causal inference.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1