Noura Qarmiche, Khaoula El Kinany, Nada Otmani, Karima El Rhazi, Nour El Houda Chaoui
{"title":"Cluster analysis of dietary patterns associated with colorectal cancer derived from a Moroccan case-control study.","authors":"Noura Qarmiche, Khaoula El Kinany, Nada Otmani, Karima El Rhazi, Nour El Houda Chaoui","doi":"10.1136/bmjhci-2022-100710","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Colorectal cancer (CRC) is a global public health problem. There is strong indication that nutrition could be an important component of primary prevention. Dietary patterns are a powerful technique for understanding the relationship between diet and cancer varying across populations.</p><p><strong>Objective: </strong>We used an unsupervised machine learning approach to cluster Moroccan dietary patterns associated with CRC.</p><p><strong>Methods: </strong>The study was conducted based on the reported nutrition of CRC matched cases and controls including 1483 pairs. Baseline dietary intake was measured using a validated food-frequency questionnaire adapted to the Moroccan context. Food items were consolidated into 30 food groups reduced on 6 dimensions by principal component analysis (PCA).</p><p><strong>Results: </strong>K-means method, applied in the PCA-subspace, identified two patterns: 'prudent pattern' (moderate consumption of almost all foods with a slight increase in fruits and vegetables) and a 'dangerous pattern' (vegetable oil, cake, chocolate, cheese, red meat, sugar and butter) with small variation between components and clusters. The student test showed a significant relationship between clusters and all food consumption except poultry. The simple logistic regression test showed that people who belong to the 'dangerous pattern' have a higher risk to develop CRC with an OR 1.59, 95% CI (1.37 to 1.38).</p><p><strong>Conclusion: </strong>The proposed algorithm applied to the CCR Nutrition database identified two dietary profiles associated with CRC: the 'dangerous pattern' and the 'prudent pattern'. The results of this study could contribute to recommendations for CRC preventive diet in the Moroccan population.</p>","PeriodicalId":9050,"journal":{"name":"BMJ Health & Care Informatics","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/8d/47/bmjhci-2022-100710.PMC10124218.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMJ Health & Care Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1136/bmjhci-2022-100710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Colorectal cancer (CRC) is a global public health problem. There is strong indication that nutrition could be an important component of primary prevention. Dietary patterns are a powerful technique for understanding the relationship between diet and cancer varying across populations.
Objective: We used an unsupervised machine learning approach to cluster Moroccan dietary patterns associated with CRC.
Methods: The study was conducted based on the reported nutrition of CRC matched cases and controls including 1483 pairs. Baseline dietary intake was measured using a validated food-frequency questionnaire adapted to the Moroccan context. Food items were consolidated into 30 food groups reduced on 6 dimensions by principal component analysis (PCA).
Results: K-means method, applied in the PCA-subspace, identified two patterns: 'prudent pattern' (moderate consumption of almost all foods with a slight increase in fruits and vegetables) and a 'dangerous pattern' (vegetable oil, cake, chocolate, cheese, red meat, sugar and butter) with small variation between components and clusters. The student test showed a significant relationship between clusters and all food consumption except poultry. The simple logistic regression test showed that people who belong to the 'dangerous pattern' have a higher risk to develop CRC with an OR 1.59, 95% CI (1.37 to 1.38).
Conclusion: The proposed algorithm applied to the CCR Nutrition database identified two dietary profiles associated with CRC: the 'dangerous pattern' and the 'prudent pattern'. The results of this study could contribute to recommendations for CRC preventive diet in the Moroccan population.