Juan Manuel Santamaría Gómez, Yolanda Salinas-Moreno, Roberto Sigüenza López, Héctor Silos Espino, Irma Guadalupe López, Alejandra Chávez Rodríguez, Isaac Andrade González
{"title":"Physicochemical, calorimetric and texture profile characteristics of various gluten-free flours.","authors":"Juan Manuel Santamaría Gómez, Yolanda Salinas-Moreno, Roberto Sigüenza López, Héctor Silos Espino, Irma Guadalupe López, Alejandra Chávez Rodríguez, Isaac Andrade González","doi":"10.1177/10820132231166723","DOIUrl":null,"url":null,"abstract":"<p><p>It is important to understand how the composition and structure of proteins from other flours differ from proteins in wheat, in order to have a better option to substitute gluten products with gluten-free food products. The aim of this study was the characterization of gluten-free flours and comparison of their rheological and calorimetric properties against wheat flour, for its use as gluten-free alternative. Chemical composition analysis, water solubility index (WSI), water absorption index (WAI), texture and calorimetric profile were determined. The closest WAI to wheat flour (1.45 g gel/g sample) was corn flour (2.41 g gel/g sample), while the WSI of chickpea flour was 5.51% approaching that of wheat flour of 5.88%. The hardness and adhesiveness values closest to wheat (1.65 kgf and 0.03 mJ) were amaranth flour with 0.85 kgf and 0.01 mJ, respectively. The phenolic content and antioxidant capacity were higher in the corn and bean flours with 244.4 mg GAE/100 g, 148 mg GAE/100 g and 190 mg AAE/100 g and 170 mg AAE/100 g, respectively. The combination of these non-conventional flours can be an innovative source of gluten-free formulas.</p>","PeriodicalId":12331,"journal":{"name":"Food Science and Technology International","volume":" ","pages":"527-534"},"PeriodicalIF":1.8000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science and Technology International","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1177/10820132231166723","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
It is important to understand how the composition and structure of proteins from other flours differ from proteins in wheat, in order to have a better option to substitute gluten products with gluten-free food products. The aim of this study was the characterization of gluten-free flours and comparison of their rheological and calorimetric properties against wheat flour, for its use as gluten-free alternative. Chemical composition analysis, water solubility index (WSI), water absorption index (WAI), texture and calorimetric profile were determined. The closest WAI to wheat flour (1.45 g gel/g sample) was corn flour (2.41 g gel/g sample), while the WSI of chickpea flour was 5.51% approaching that of wheat flour of 5.88%. The hardness and adhesiveness values closest to wheat (1.65 kgf and 0.03 mJ) were amaranth flour with 0.85 kgf and 0.01 mJ, respectively. The phenolic content and antioxidant capacity were higher in the corn and bean flours with 244.4 mg GAE/100 g, 148 mg GAE/100 g and 190 mg AAE/100 g and 170 mg AAE/100 g, respectively. The combination of these non-conventional flours can be an innovative source of gluten-free formulas.
期刊介绍:
Food Science and Technology International (FSTI) shares knowledge from leading researchers of food science and technology. Covers food processing and engineering, food safety and preservation, food biotechnology, and physical, chemical and sensory properties of foods. This journal is a member of the Committee on Publication Ethics (COPE).