Bora Jin, David B Dunson, Julia E Rager, David M Reif, Stephanie M Engel, Amy H Herring
{"title":"Bayesian matrix completion for hypothesis testing.","authors":"Bora Jin, David B Dunson, Julia E Rager, David M Reif, Stephanie M Engel, Amy H Herring","doi":"10.1093/jrsssc/qlac005","DOIUrl":null,"url":null,"abstract":"<p><p>We aim to infer bioactivity of each chemical by assay endpoint combination, addressing sparsity of toxicology data. We propose a Bayesian hierarchical framework which borrows information across different chemicals and assay endpoints, facilitates out-of-sample prediction of activity for chemicals not yet assayed, quantifies uncertainty of predicted activity, and adjusts for multiplicity in hypothesis testing. Furthermore, this paper makes a novel attempt in toxicology to simultaneously model heteroscedastic errors and a nonparametric mean function, leading to a broader definition of activity whose need has been suggested by toxicologists. Real application identifies chemicals most likely active for neurodevelopmental disorders and obesity.</p>","PeriodicalId":49981,"journal":{"name":"Journal of the Royal Statistical Society Series C-Applied Statistics","volume":"72 2","pages":"254-270"},"PeriodicalIF":1.0000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10184491/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society Series C-Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jrsssc/qlac005","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
We aim to infer bioactivity of each chemical by assay endpoint combination, addressing sparsity of toxicology data. We propose a Bayesian hierarchical framework which borrows information across different chemicals and assay endpoints, facilitates out-of-sample prediction of activity for chemicals not yet assayed, quantifies uncertainty of predicted activity, and adjusts for multiplicity in hypothesis testing. Furthermore, this paper makes a novel attempt in toxicology to simultaneously model heteroscedastic errors and a nonparametric mean function, leading to a broader definition of activity whose need has been suggested by toxicologists. Real application identifies chemicals most likely active for neurodevelopmental disorders and obesity.
期刊介绍:
The Journal of the Royal Statistical Society, Series C (Applied Statistics) is a journal of international repute for statisticians both inside and outside the academic world. The journal is concerned with papers which deal with novel solutions to real life statistical problems by adapting or developing methodology, or by demonstrating the proper application of new or existing statistical methods to them. At their heart therefore the papers in the journal are motivated by examples and statistical data of all kinds. The subject-matter covers the whole range of inter-disciplinary fields, e.g. applications in agriculture, genetics, industry, medicine and the physical sciences, and papers on design issues (e.g. in relation to experiments, surveys or observational studies).
A deep understanding of statistical methodology is not necessary to appreciate the content. Although papers describing developments in statistical computing driven by practical examples are within its scope, the journal is not concerned with simply numerical illustrations or simulation studies. The emphasis of Series C is on case-studies of statistical analyses in practice.