Statistical Inference in Redundancy Analysis: A Direct Covariance Structure Modeling Approach.

IF 3.5 3区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Multivariate Behavioral Research Pub Date : 2023-09-01 Epub Date: 2022-12-10 DOI:10.1080/00273171.2022.2141675
Fei Gu, Yiu-Fai Yung, Mike W-L Cheung, Baek-Kyoo Brian Joo, Kim Nimon
{"title":"Statistical Inference in Redundancy Analysis: A Direct Covariance Structure Modeling Approach.","authors":"Fei Gu,&nbsp;Yiu-Fai Yung,&nbsp;Mike W-L Cheung,&nbsp;Baek-Kyoo Brian Joo,&nbsp;Kim Nimon","doi":"10.1080/00273171.2022.2141675","DOIUrl":null,"url":null,"abstract":"<p><p>Redundancy analysis (RA) is a multivariate method that maximizes the mean variance of a set of criterion variables explained by a small number of redundancy variates (i.e., linear combinations of a set of predictor variables). However, two challenges exist in RA. First, inferential information for the RA estimates might not be readily available. Second, the existing methods addressing the dimensionality problem in RA are limited for various reasons. To aid the applications of RA, we propose a direct covariance structure modeling approach to RA. The proposed approach (1) provides inferential information for the RA estimates, and (2) allows the researcher to use a simple yet practical criterion to address the dimensionality problem in RA. We illustrate our approach with an artificial example, validate some standard error estimates by simulations, and demonstrate our new criterion in a real example. Finally, we conclude with future research topics.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"877-893"},"PeriodicalIF":3.5000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multivariate Behavioral Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/00273171.2022.2141675","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Redundancy analysis (RA) is a multivariate method that maximizes the mean variance of a set of criterion variables explained by a small number of redundancy variates (i.e., linear combinations of a set of predictor variables). However, two challenges exist in RA. First, inferential information for the RA estimates might not be readily available. Second, the existing methods addressing the dimensionality problem in RA are limited for various reasons. To aid the applications of RA, we propose a direct covariance structure modeling approach to RA. The proposed approach (1) provides inferential information for the RA estimates, and (2) allows the researcher to use a simple yet practical criterion to address the dimensionality problem in RA. We illustrate our approach with an artificial example, validate some standard error estimates by simulations, and demonstrate our new criterion in a real example. Finally, we conclude with future research topics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
冗余分析中的统计推断:一种直接协方差结构建模方法。
冗余分析(RA)是一种多变量方法,它最大化由少量冗余变量(即一组预测变量的线性组合)解释的一组标准变量的平均方差。然而,RA存在两个挑战。首先,RA估计的推断信息可能不容易获得。其次,由于各种原因,现有的解决RA中维度问题的方法是有限的。为了帮助RA的应用,我们提出了一种直接的协方差结构建模方法。所提出的方法(1)为RA估计提供了推断信息,(2)允许研究人员使用一个简单而实用的标准来解决RA中的维度问题。我们用一个人工例子说明了我们的方法,通过模拟验证了一些标准误差估计,并在一个实际例子中证明了我们的新标准。最后,我们总结了未来的研究课题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Multivariate Behavioral Research
Multivariate Behavioral Research 数学-数学跨学科应用
CiteScore
7.60
自引率
2.60%
发文量
49
审稿时长
>12 weeks
期刊介绍: Multivariate Behavioral Research (MBR) publishes a variety of substantive, methodological, and theoretical articles in all areas of the social and behavioral sciences. Most MBR articles fall into one of two categories. Substantive articles report on applications of sophisticated multivariate research methods to study topics of substantive interest in personality, health, intelligence, industrial/organizational, and other behavioral science areas. Methodological articles present and/or evaluate new developments in multivariate methods, or address methodological issues in current research. We also encourage submission of integrative articles related to pedagogy involving multivariate research methods, and to historical treatments of interest and relevance to multivariate research methods.
期刊最新文献
Neural Network Analysis of Psychological Data: A Step-by-Step Guide. Novel Full-Bayesian and Hybrid-Bayesian Approaches for Modeling Intraindividual Variability. Integrated Trend and Lagged Modeling of Multi-Subject, Multilevel, and Short Time Series. Regression Discontinuity Analysis with Latent Variables. Demystifying Posterior Distributions: A Tutorial on Their Derivation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1