Jiaqi Liu, Linna Kong, Wenqing Bian, Xiaona Lin, Feifei Wei, Jun Chu
{"title":"circRNA_0001006 predicts prognosis and regulates cellular processes of triple-negative breast cancer via miR-424-5p.","authors":"Jiaqi Liu, Linna Kong, Wenqing Bian, Xiaona Lin, Feifei Wei, Jun Chu","doi":"10.1186/s13008-023-00089-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>circular RNAs (circRNAs) have been considered novel biomarker candidates for human cancers, such as triple-negative breast cancer (TNBC). circ_0001006 was identified as a differentially expressed circRNA in metastatic breast cancer, but its significance and function in TNBC were unclear. The significance of circ_0001006 in TNBC was assessed and exploring its potential molecular mechanism to provide a therapeutic target for TNBC.</p><p><strong>Results: </strong>circ_0001006 showed significant upregulation in TNBC and close association with patients' histological grade, Ki67 level, and TNM stage. Upregulated circ_0001006 could predict a worse prognosis and high risk of TNBC patients. In TNBC cells, silencing circ_0001006 suppressed cell proliferation, migration, and invasion. In mechanism, circ_0001006 could negatively regulate miR-424-5p, which mediated the inhibition of cellular processes by circ_0001006 knockdown.</p><p><strong>Conclusions: </strong>Upregulated circ_0001006 in TNBC served as a poor prognosis predictor and tumor promoter via negatively regulating miR-424-5p.</p>","PeriodicalId":49263,"journal":{"name":"Cell Division","volume":"18 1","pages":"7"},"PeriodicalIF":2.8000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10186655/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Division","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13008-023-00089-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: circular RNAs (circRNAs) have been considered novel biomarker candidates for human cancers, such as triple-negative breast cancer (TNBC). circ_0001006 was identified as a differentially expressed circRNA in metastatic breast cancer, but its significance and function in TNBC were unclear. The significance of circ_0001006 in TNBC was assessed and exploring its potential molecular mechanism to provide a therapeutic target for TNBC.
Results: circ_0001006 showed significant upregulation in TNBC and close association with patients' histological grade, Ki67 level, and TNM stage. Upregulated circ_0001006 could predict a worse prognosis and high risk of TNBC patients. In TNBC cells, silencing circ_0001006 suppressed cell proliferation, migration, and invasion. In mechanism, circ_0001006 could negatively regulate miR-424-5p, which mediated the inhibition of cellular processes by circ_0001006 knockdown.
Conclusions: Upregulated circ_0001006 in TNBC served as a poor prognosis predictor and tumor promoter via negatively regulating miR-424-5p.
期刊介绍:
Cell Division is an open access, peer-reviewed journal that encompasses all the molecular aspects of cell cycle control and cancer, cell growth, proliferation, survival, differentiation, signalling, gene transcription, protein synthesis, genome integrity, chromosome stability, centrosome duplication, DNA damage and DNA repair.
Cell Division provides an online forum for the cell-cycle community that aims to publish articles on all exciting aspects of cell-cycle research and to bridge the gap between models of cell cycle regulation, development, and cancer biology. This forum is driven by specialized and timely research articles, reviews and commentaries focused on this fast moving field, providing an invaluable tool for cell-cycle biologists.
Cell Division publishes articles in areas which includes, but not limited to:
DNA replication, cell fate decisions, cell cycle & development
Cell proliferation, mitosis, spindle assembly checkpoint, ubiquitin mediated degradation
DNA damage & repair
Apoptosis & cell death