The partly parametric and partly nonparametric additive risk model.

IF 1.2 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Lifetime Data Analysis Pub Date : 2023-04-01 Epub Date: 2021-10-26 DOI:10.1007/s10985-021-09535-3
Nils Lid Hjort, Emil Aas Stoltenberg
{"title":"The partly parametric and partly nonparametric additive risk model.","authors":"Nils Lid Hjort, Emil Aas Stoltenberg","doi":"10.1007/s10985-021-09535-3","DOIUrl":null,"url":null,"abstract":"<p><p>Aalen's linear hazard rate regression model is a useful and increasingly popular alternative to Cox' multiplicative hazard rate model. It postulates that an individual has hazard rate function [Formula: see text] in terms of his covariate values [Formula: see text]. These are typically levels of various hazard factors, and may also be time-dependent. The hazard factor functions [Formula: see text] are the parameters of the model and are estimated from data. This is traditionally accomplished in a fully nonparametric way. This paper develops methodology for estimating the hazard factor functions when some of them are modelled parametrically while the others are left unspecified. Large-sample results are reached inside this partly parametric, partly nonparametric framework, which also enables us to assess the goodness of fit of the model's parametric components. In addition, these results are used to pinpoint how much precision is gained, using the parametric-nonparametric model, over the standard nonparametric method. A real-data application is included, along with a brief simulation study.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":"29 2","pages":"372-402"},"PeriodicalIF":1.2000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10006282/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-021-09535-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/10/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Aalen's linear hazard rate regression model is a useful and increasingly popular alternative to Cox' multiplicative hazard rate model. It postulates that an individual has hazard rate function [Formula: see text] in terms of his covariate values [Formula: see text]. These are typically levels of various hazard factors, and may also be time-dependent. The hazard factor functions [Formula: see text] are the parameters of the model and are estimated from data. This is traditionally accomplished in a fully nonparametric way. This paper develops methodology for estimating the hazard factor functions when some of them are modelled parametrically while the others are left unspecified. Large-sample results are reached inside this partly parametric, partly nonparametric framework, which also enables us to assess the goodness of fit of the model's parametric components. In addition, these results are used to pinpoint how much precision is gained, using the parametric-nonparametric model, over the standard nonparametric method. A real-data application is included, along with a brief simulation study.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
部分参数和部分非参数加法风险模型。
Aalen 的线性危险率回归模型是 Cox 的乘法危险率模型的一个有用且日益流行的替代模型。它假定一个人的协变量值[公式:见正文]具有危险率函数[公式:见正文]。这些通常是各种危险因子的水平,也可能与时间有关。危险因子函数[公式:见正文]是模型的参数,根据数据进行估计。传统上这是以完全非参数的方式完成的。本文开发了一种方法,用于在部分危险因子函数以参数方式建模,而其他危险因子函数未指定的情况下估算危险因子函数。在这个部分参数、部分非参数的框架内得出了大样本结果,这也使我们能够评估模型参数部分的拟合度。此外,这些结果还用于确定使用参数-非参数模型比使用标准非参数方法提高了多少精度。其中包括一个真实数据应用以及一个简短的模拟研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Lifetime Data Analysis
Lifetime Data Analysis 数学-数学跨学科应用
CiteScore
2.30
自引率
7.70%
发文量
43
审稿时长
3 months
期刊介绍: The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.
期刊最新文献
Conditional modeling of recurrent event data with terminal event. Evaluating time-to-event surrogates for time-to-event true endpoints: an information-theoretic approach based on causal inference. Optimal survival analyses with prevalent and incident patients. Two-stage pseudo maximum likelihood estimation of semiparametric copula-based regression models for semi-competing risks data. Nonparametric estimation of the cumulative incidence function for doubly-truncated and interval-censored competing risks data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1