Shobhit K Singh, Devajit Borthakur, Abhijit Tamuly, J G Manjaya, Pradeep K Patel, Boby Gogoi, Santanu Sabhapondit, Nabajyoti J Neog, A K Barooah
{"title":"Assessment of gamma radiation through agro-morphological characters in <i>camellia sinensis</i> L. (O.) kuntze.","authors":"Shobhit K Singh, Devajit Borthakur, Abhijit Tamuly, J G Manjaya, Pradeep K Patel, Boby Gogoi, Santanu Sabhapondit, Nabajyoti J Neog, A K Barooah","doi":"10.1080/09553002.2022.2121872","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To study the effects of gamma radiation on tea seed germination, morphological changes, and genetic variation by using gamma radiation.</p><p><strong>Material and method: </strong>Fresh Tea seed material were irradiated with twenty different doses of gamma radiation such as 0, 2, 4, 6, 8, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80 90, 100, 200, 500 and 1000 Gy from Cobalt <sup>60</sup>Co source from Regional Nuclear Agriculture Research Center, Bidhan Chandra Krishi Viswavidyalaya (BCKV), West Bengal, in between 2019 and 2020.</p><p><strong>Result and conclusion: </strong>The growth behavior of tea seedling was recorded under varying levels of gamma radiation and its performance at nursery stages. It was observed seed irradiated with doses from 35 Gy to 100 Gy could germinate but could not survive beyond five (05) months. When treated with higher doses as 200 Gy, 500 Gy and 1000 Gy, no seed germination takes places due to possible damages occur in the DNA structure. Screening of growth characteristics of tea plant generally monitored by the characteristics like plant height, number of leaves, number of primary branches, base diameter, and total leaf area of plants and we found that these characteristics significantly increased with the progress of time and increasing levels of gamma radiation; however, the plant height showed decreasing trend with the increasing levels of gamma radiation, which could be due to the change in chromosomal structure and genetic alteration. After 90 weeks of planting, the plant height, no. of primary branches, the number of leaves, plant base diameter, and total leaf area per plant recorded were 36.42 cm, 1/plant, 7.11/plant, 0.62 c.m, 22.92 cm<sup>2</sup>/plant respectively under the radiation level 30 Gy, whereas the corresponding figures of the above parameters at the control treatment were 85.32 cm, 1/plant, 18.84/plant, 1.18 c.m and 26.68 cm<sup>2</sup>/plant, respectively. The total plant height, no. of primary branches, the number of leaves, plant base diameter, and total leaf area per plant were significantly influenced by the rising levels of gamma radiation (up to 100 Gy), finally, after 90 weeks of planting, the maximum no. of branching was observed in the treatment of 8 Gy, 10 Gy and 15 Gy respectively. The study reveals a hitherto open the possibility of using gamma radiation on tea plant for creation of variation in the tea seed planting materials. Further studies on mutation using tea planting materials would give an insight into its mutable gene behavior.</p>","PeriodicalId":14261,"journal":{"name":"International Journal of Radiation Biology","volume":"99 5","pages":"866-874"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Radiation Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/09553002.2022.2121872","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Purpose: To study the effects of gamma radiation on tea seed germination, morphological changes, and genetic variation by using gamma radiation.
Material and method: Fresh Tea seed material were irradiated with twenty different doses of gamma radiation such as 0, 2, 4, 6, 8, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80 90, 100, 200, 500 and 1000 Gy from Cobalt 60Co source from Regional Nuclear Agriculture Research Center, Bidhan Chandra Krishi Viswavidyalaya (BCKV), West Bengal, in between 2019 and 2020.
Result and conclusion: The growth behavior of tea seedling was recorded under varying levels of gamma radiation and its performance at nursery stages. It was observed seed irradiated with doses from 35 Gy to 100 Gy could germinate but could not survive beyond five (05) months. When treated with higher doses as 200 Gy, 500 Gy and 1000 Gy, no seed germination takes places due to possible damages occur in the DNA structure. Screening of growth characteristics of tea plant generally monitored by the characteristics like plant height, number of leaves, number of primary branches, base diameter, and total leaf area of plants and we found that these characteristics significantly increased with the progress of time and increasing levels of gamma radiation; however, the plant height showed decreasing trend with the increasing levels of gamma radiation, which could be due to the change in chromosomal structure and genetic alteration. After 90 weeks of planting, the plant height, no. of primary branches, the number of leaves, plant base diameter, and total leaf area per plant recorded were 36.42 cm, 1/plant, 7.11/plant, 0.62 c.m, 22.92 cm2/plant respectively under the radiation level 30 Gy, whereas the corresponding figures of the above parameters at the control treatment were 85.32 cm, 1/plant, 18.84/plant, 1.18 c.m and 26.68 cm2/plant, respectively. The total plant height, no. of primary branches, the number of leaves, plant base diameter, and total leaf area per plant were significantly influenced by the rising levels of gamma radiation (up to 100 Gy), finally, after 90 weeks of planting, the maximum no. of branching was observed in the treatment of 8 Gy, 10 Gy and 15 Gy respectively. The study reveals a hitherto open the possibility of using gamma radiation on tea plant for creation of variation in the tea seed planting materials. Further studies on mutation using tea planting materials would give an insight into its mutable gene behavior.
期刊介绍:
The International Journal of Radiation Biology publishes original papers, reviews, current topic articles, technical notes/reports, and meeting reports on the effects of ionizing, UV and visible radiation, accelerated particles, electromagnetic fields, ultrasound, heat and related modalities. The focus is on the biological effects of such radiations: from radiation chemistry to the spectrum of responses of living organisms and underlying mechanisms, including genetic abnormalities, repair phenomena, cell death, dose modifying agents and tissue responses. Application of basic studies to medical uses of radiation extends the coverage to practical problems such as physical and chemical adjuvants which improve the effectiveness of radiation in cancer therapy. Assessment of the hazards of low doses of radiation is also considered.