A dual alignment-based multi-source domain adaptation framework for motor imagery EEG classification.

Dong-Qin Xu, Ming-Ai Li
{"title":"A dual alignment-based multi-source domain adaptation framework for motor imagery EEG classification.","authors":"Dong-Qin Xu,&nbsp;Ming-Ai Li","doi":"10.1007/s10489-022-04077-z","DOIUrl":null,"url":null,"abstract":"<p><p>Domain adaptation, as an important branch of transfer learning, can be applied to cope with data insufficiency and high subject variabilities in motor imagery electroencephalogram (MI-EEG) based brain-computer interfaces. The existing methods generally focus on aligning data and feature distribution; however, aligning each source domain with the informative samples of the target domain and seeking the most appropriate source domains to enhance the classification effect has not been considered. In this paper, we propose a dual alignment-based multi-source domain adaptation framework, denoted DAMSDAF. Based on continuous wavelet transform, all channels of MI-EEG signals are converted respectively and the generated time-frequency spectrum images are stitched to construct multi-source domains and target domain. Then, the informative samples close to the decision boundary are found in the target domain by using entropy, and they are employed to align and reassign each source domain with normalized mutual information. Furthermore, a multi-branch deep network (MBDN) is designed, and the maximum mean discrepancy is embedded in each branch to realign the specific feature distribution. Each branch is separately trained by an aligned source domain, and all the single branch transfer accuracies are arranged in descending order and utilized for weighted prediction of MBDN. Therefore, the most suitable number of source domains with top weights can be automatically determined. Extensive experiments are conducted based on 3 public MI-EEG datasets. DAMSDAF achieves the classification accuracies of 92.56%, 69.45% and 89.57%, and the statistical analysis is performed by the kappa value and <i>t-</i>test. Experimental results show that DAMSDAF significantly improves the transfer effects compared to the present methods, indicating that dual alignment can sufficiently use the different weighted samples and even source domains at different levels as well as realizing optimal selection of multi-source domains.</p>","PeriodicalId":72260,"journal":{"name":"Applied intelligence (Dordrecht, Netherlands)","volume":"53 9","pages":"10766-10788"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9402410/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied intelligence (Dordrecht, Netherlands)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10489-022-04077-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Domain adaptation, as an important branch of transfer learning, can be applied to cope with data insufficiency and high subject variabilities in motor imagery electroencephalogram (MI-EEG) based brain-computer interfaces. The existing methods generally focus on aligning data and feature distribution; however, aligning each source domain with the informative samples of the target domain and seeking the most appropriate source domains to enhance the classification effect has not been considered. In this paper, we propose a dual alignment-based multi-source domain adaptation framework, denoted DAMSDAF. Based on continuous wavelet transform, all channels of MI-EEG signals are converted respectively and the generated time-frequency spectrum images are stitched to construct multi-source domains and target domain. Then, the informative samples close to the decision boundary are found in the target domain by using entropy, and they are employed to align and reassign each source domain with normalized mutual information. Furthermore, a multi-branch deep network (MBDN) is designed, and the maximum mean discrepancy is embedded in each branch to realign the specific feature distribution. Each branch is separately trained by an aligned source domain, and all the single branch transfer accuracies are arranged in descending order and utilized for weighted prediction of MBDN. Therefore, the most suitable number of source domains with top weights can be automatically determined. Extensive experiments are conducted based on 3 public MI-EEG datasets. DAMSDAF achieves the classification accuracies of 92.56%, 69.45% and 89.57%, and the statistical analysis is performed by the kappa value and t-test. Experimental results show that DAMSDAF significantly improves the transfer effects compared to the present methods, indicating that dual alignment can sufficiently use the different weighted samples and even source domains at different levels as well as realizing optimal selection of multi-source domains.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于双对齐的运动意象脑电分类多源域自适应框架。
领域适应是迁移学习的一个重要分支,可用于解决基于运动图像脑电图的脑机接口中数据不足和高主体变异性的问题。现有方法一般侧重于数据对齐和特征分布;然而,没有考虑将每个源域与目标域的信息样本对齐,并寻找最合适的源域来增强分类效果。本文提出了一种基于双对齐的多源域自适应框架,称为DAMSDAF。在连续小波变换的基础上,对脑电信号各通道分别进行变换,并对生成的时频频谱图像进行拼接,构建多源域和目标域。然后,利用熵在目标域中找到接近决策边界的信息样本,利用归一化互信息对每个源域进行对齐和重新分配。在此基础上,设计了一种多分支深度网络(MBDN),在每个分支中嵌入最大均值差异来重新调整特定的特征分布。每个分支通过对齐的源域单独训练,将所有的单分支传输精度按降序排列,用于MBDN的加权预测。因此,可以自动确定具有最高权重的最合适数量的源域。基于3个公开的MI-EEG数据集进行了大量的实验。DAMSDAF的分类准确率分别为92.56%、69.45%和89.57%,采用kappa值和t检验进行统计分析。实验结果表明,与现有方法相比,DAMSDAF显著提高了传递效果,表明双对齐可以充分利用不同加权样本甚至不同层次的源域,并实现了多源域的最优选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Label recovery and label correlation co-learning for multi-view multi-label classification with incomplete labels. DC-CNN: Dual-channel Convolutional Neural Networks with attention-pooling for fake news detection. A dual alignment-based multi-source domain adaptation framework for motor imagery EEG classification. A novel hybrid multi-thread metaheuristic approach for fake news detection in social media. Front-end deep learning web apps development and deployment: a review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1