Accelerating Minimap2 for Accurate Long Read Alignment on GPUs.

Journal of Biotechnology and Biomedicine Pub Date : 2023-01-01 Epub Date: 2023-01-20 DOI:10.26502/jbb.2642-91280067
Harisankar Sadasivan, Milos Maric, Eric Dawson, Vishanth Iyer, Johnny Israeli, Satish Narayanasamy
{"title":"Accelerating Minimap2 for Accurate Long Read Alignment on GPUs.","authors":"Harisankar Sadasivan, Milos Maric, Eric Dawson, Vishanth Iyer, Johnny Israeli, Satish Narayanasamy","doi":"10.26502/jbb.2642-91280067","DOIUrl":null,"url":null,"abstract":"<p><p>Long read sequencing technology is becoming increasingly popular for Precision Medicine applications like Whole Genome Sequencing (WGS) and microbial abundance estimation. Minimap2 is the state-of-the-art aligner and mapper used by the leading long read sequencing technologies, today. However, Minimap2 on CPUs is very slow for long noisy reads. ~60-70% of the run-time on a CPU comes from the highly sequential chaining step in Minimap2. On the other hand, most Point-of-Care computational workflows in long read sequencing use Graphics Processing Units (GPUs). We present minimap2-accelerated (mm2-ax), a heterogeneous design for sequence mapping and alignment where minimap2's compute intensive chaining step is sped up on the GPU and demonstrate its time and cost benefits. We extract better intra-read parallelism from chaining without losing mapping accuracy by forward transforming Minimap2's chaining algorithm. Moreover, we better utilize the high memory available on modern cloud instances apart from better workload balancing, data locality and minimal branch divergence on the GPU. We show mm2-ax on an NVIDIA A100 GPU improves the chaining step with 5.41 - 2.57X speedup and 4.07 - 1.93X speedup : costup over the fastest version of Minimap2, mm2-fast, benchmarked on a Google Cloud Platform instance of 30 SIMD cores.</p>","PeriodicalId":15066,"journal":{"name":"Journal of Biotechnology and Biomedicine","volume":"6 1","pages":"13-23"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10018915/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biotechnology and Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26502/jbb.2642-91280067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/20 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Long read sequencing technology is becoming increasingly popular for Precision Medicine applications like Whole Genome Sequencing (WGS) and microbial abundance estimation. Minimap2 is the state-of-the-art aligner and mapper used by the leading long read sequencing technologies, today. However, Minimap2 on CPUs is very slow for long noisy reads. ~60-70% of the run-time on a CPU comes from the highly sequential chaining step in Minimap2. On the other hand, most Point-of-Care computational workflows in long read sequencing use Graphics Processing Units (GPUs). We present minimap2-accelerated (mm2-ax), a heterogeneous design for sequence mapping and alignment where minimap2's compute intensive chaining step is sped up on the GPU and demonstrate its time and cost benefits. We extract better intra-read parallelism from chaining without losing mapping accuracy by forward transforming Minimap2's chaining algorithm. Moreover, we better utilize the high memory available on modern cloud instances apart from better workload balancing, data locality and minimal branch divergence on the GPU. We show mm2-ax on an NVIDIA A100 GPU improves the chaining step with 5.41 - 2.57X speedup and 4.07 - 1.93X speedup : costup over the fastest version of Minimap2, mm2-fast, benchmarked on a Google Cloud Platform instance of 30 SIMD cores.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在 GPU 上加速 Minimap2 以实现精确的长读数配准。
长读测序技术在全基因组测序(WGS)和微生物丰度估计等精准医学应用中越来越受欢迎。Minimap2 是当今领先的长读测序技术所使用的最先进的比对器和映射器。然而,CPU 上的 Minimap2 处理长噪声读数的速度非常慢。~在 CPU 上,约 60-70% 的运行时间来自 Minimap2 中的高序列链步骤。另一方面,大多数长读数测序的护理点计算工作流程都使用图形处理器(GPU)。我们介绍了用于序列映射和比对的异构设计--minimap2-accelerated(mm2-ax),在该设计中,minimap2 的计算密集型链式步骤在 GPU 上被加速,并展示了其在时间和成本方面的优势。我们通过对 Minimap2 的链式算法进行前向转换,在不损失映射精度的情况下从链式算法中提取出更好的读取内并行性。此外,除了在 GPU 上实现更好的工作负载平衡、数据局部性和最小分支分歧外,我们还能更好地利用现代云实例上的大内存。我们在英伟达™(NVIDIA®)A100 GPU上展示了mm2-ax,与谷歌云平台上拥有30个SIMD内核的Minimap2最快版本mm2-fast相比,mm2-ax的速度提高了5.41 - 2.57倍,成本提高了4.07 - 1.93倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The ERK Signaling Cascade Inhibits Gonadotropin-Stimulated Steroidogenesis. Immunomodulatory Effect of Electromagnetic Field in the Treatment of Traumatic Brain Injury. Accelerating Minimap2 for Accurate Long Read Alignment on GPUs. Cellular Mechanisms of Electromagnetic Field in Traumatic Brain Injury. Therapeutic Potential of "Smart" Exosomes in Peripheral Nerve Regeneration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1