Automatic Method for Optic Disc Segmentation Using Deep Learning on Retinal Fundus Images.

IF 2.3 Q3 MEDICAL INFORMATICS Healthcare Informatics Research Pub Date : 2023-04-01 DOI:10.4258/hir.2023.29.2.145
Anindita Septiarini, Hamdani Hamdani, Emy Setyaningsih, Eko Junirianto, Fitri Utaminingrum
{"title":"Automatic Method for Optic Disc Segmentation Using Deep Learning on Retinal Fundus Images.","authors":"Anindita Septiarini,&nbsp;Hamdani Hamdani,&nbsp;Emy Setyaningsih,&nbsp;Eko Junirianto,&nbsp;Fitri Utaminingrum","doi":"10.4258/hir.2023.29.2.145","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The optic disc is part of the retinal fundus image structure, which influences the extraction of glaucoma features. This study proposes a method that automatically segments the optic disc area in retinal fundus images using deep learning based on a convolutional neural network (CNN).</p><p><strong>Methods: </strong>This study used private and public datasets containing retinal fundus images. The private dataset consisted of 350 images, while the public dataset was the Retinal Fundus Glaucoma Challenge (REFUGE). The proposed method was based on a CNN with a single-shot multibox detector (MobileNetV2) to form images of the region-of-interest (ROI) using the original image resized into 640 × 640 input data. A pre-processing sequence was then implemented, including augmentation, resizing, and normalization. Furthermore, a U-Net model was applied for optic disc segmentation with 128 × 128 input data.</p><p><strong>Results: </strong>The proposed method was appropriately applied to the datasets used, as shown by the values of the F1-score, dice score, and intersection over union of 0.9880, 0.9852, and 0.9763 for the private dataset, respectively, and 0.9854, 0.9838 and 0.9712 for the REFUGE dataset.</p><p><strong>Conclusions: </strong>The optic disc area produced by the proposed method was similar to that identified by an ophthalmologist. Therefore, this method can be considered for implementing automatic segmentation of the optic disc area.</p>","PeriodicalId":12947,"journal":{"name":"Healthcare Informatics Research","volume":"29 2","pages":"145-151"},"PeriodicalIF":2.3000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f1/52/hir-2023-29-2-145.PMC10209731.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare Informatics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4258/hir.2023.29.2.145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Objectives: The optic disc is part of the retinal fundus image structure, which influences the extraction of glaucoma features. This study proposes a method that automatically segments the optic disc area in retinal fundus images using deep learning based on a convolutional neural network (CNN).

Methods: This study used private and public datasets containing retinal fundus images. The private dataset consisted of 350 images, while the public dataset was the Retinal Fundus Glaucoma Challenge (REFUGE). The proposed method was based on a CNN with a single-shot multibox detector (MobileNetV2) to form images of the region-of-interest (ROI) using the original image resized into 640 × 640 input data. A pre-processing sequence was then implemented, including augmentation, resizing, and normalization. Furthermore, a U-Net model was applied for optic disc segmentation with 128 × 128 input data.

Results: The proposed method was appropriately applied to the datasets used, as shown by the values of the F1-score, dice score, and intersection over union of 0.9880, 0.9852, and 0.9763 for the private dataset, respectively, and 0.9854, 0.9838 and 0.9712 for the REFUGE dataset.

Conclusions: The optic disc area produced by the proposed method was similar to that identified by an ophthalmologist. Therefore, this method can be considered for implementing automatic segmentation of the optic disc area.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的眼底图像视盘自动分割方法。
目的:视盘是视网膜眼底图像结构的一部分,影响青光眼特征的提取。本研究提出了一种基于卷积神经网络(CNN)的深度学习自动分割视网膜眼底图像视盘区域的方法。方法:本研究使用了包含视网膜眼底图像的私人和公共数据集。私有数据集由350张图像组成,而公共数据集是视网膜眼底青光眼挑战(REFUGE)。该方法基于带有单镜头多盒检测器(MobileNetV2)的CNN,将原始图像调整为640 × 640的输入数据,形成感兴趣区域(ROI)图像。然后实现预处理序列,包括增强、调整大小和规范化。此外,采用U-Net模型对128 × 128输入数据进行视盘分割。结果:所提出的方法适用于所使用的数据集,private数据集的f1得分、dice得分和交集/并的值分别为0.9880、0.9852和0.9763,REFUGE数据集的f1得分、dice得分和交集/并的值分别为0.9854、0.9838和0.9712。结论:所提出的方法所产生的视盘面积与眼科医生鉴定的视盘面积相似。因此,可以考虑使用该方法实现视盘区域的自动分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Healthcare Informatics Research
Healthcare Informatics Research MEDICAL INFORMATICS-
CiteScore
4.90
自引率
6.90%
发文量
44
期刊最新文献
Implementation of the Digital Health Approach to Support Learning for Health Students Based on Bloom's Taxonomy: A Systematic Review. Mapping Drug Terms via Integration of a Retrieval-Augmented Generation Algorithm with a Large Language Model. Milestones and Growth: The 30-Year Journey of Healthcare Informatics Research. Mobile Application for Digital Health Coaching in the Self-Management of Older Adults with Multiple Chronic Conditions: A Development and Usability Study. Nursing Records Regarding Decision-Making in Cancer Supportive Care: A Retrospective Study in Japan.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1