New Horizons in Plant Photoperiodism.

IF 21.3 1区 生物学 Q1 PLANT SCIENCES Annual review of plant biology Pub Date : 2023-05-22 Epub Date: 2023-02-28 DOI:10.1146/annurev-arplant-070522-055628
Joshua M Gendron, Dorothee Staiger
{"title":"New Horizons in Plant Photoperiodism.","authors":"Joshua M Gendron, Dorothee Staiger","doi":"10.1146/annurev-arplant-070522-055628","DOIUrl":null,"url":null,"abstract":"<p><p>Photoperiod-measuring mechanisms allow organisms to anticipate seasonal changes to align reproduction and growth with appropriate times of the year. This review provides historical and modern context to studies of plant photoperiodism. We describe how studies of photoperiodic flowering in plants led to the first theoretical models of photoperiod-measuring mechanisms in any organism. We discuss how more recent molecular genetic studies in <i>Arabidopsis</i> and rice have revisited these concepts. We then discuss how photoperiod transcriptomics provides new lessons about photoperiodic gene regulatory networks and the discovery of noncanonical photoperiod-measuring systems housed in metabolic networks of plants. This leads to an examination of nonflowering developmental processes controlled by photoperiod, including metabolism and growth. Finally, we highlight the importance of understanding photoperiodism in the context of climate change, delving into the rapid latitudinal migration of plant species and the potential role of photoperiod-measuring systems in generating photic barriers during migration.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":null,"pages":null},"PeriodicalIF":21.3000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11114106/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of plant biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-arplant-070522-055628","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Photoperiod-measuring mechanisms allow organisms to anticipate seasonal changes to align reproduction and growth with appropriate times of the year. This review provides historical and modern context to studies of plant photoperiodism. We describe how studies of photoperiodic flowering in plants led to the first theoretical models of photoperiod-measuring mechanisms in any organism. We discuss how more recent molecular genetic studies in Arabidopsis and rice have revisited these concepts. We then discuss how photoperiod transcriptomics provides new lessons about photoperiodic gene regulatory networks and the discovery of noncanonical photoperiod-measuring systems housed in metabolic networks of plants. This leads to an examination of nonflowering developmental processes controlled by photoperiod, including metabolism and growth. Finally, we highlight the importance of understanding photoperiodism in the context of climate change, delving into the rapid latitudinal migration of plant species and the potential role of photoperiod-measuring systems in generating photic barriers during migration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
植物光周期的新视野。
光周期测量机制使生物能够预测季节变化,从而使繁殖和生长与一年中的适当时间保持一致。本综述介绍了植物光周期研究的历史和现代背景。我们描述了对植物光周期开花的研究是如何首次提出任何生物体光周期测量机制的理论模型的。我们讨论了最近在拟南芥和水稻中进行的分子遗传研究是如何重新审视这些概念的。然后,我们将讨论光周期转录组学如何为光周期基因调控网络提供新的启示,以及如何发现植物代谢网络中的非规范光周期测量系统。这就引出了对受光周期控制的非开花发育过程的研究,包括新陈代谢和生长。最后,我们强调了在气候变化背景下理解光周期的重要性,深入研究了植物物种的快速纬度迁移以及光周期测量系统在迁移过程中产生光障碍的潜在作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual review of plant biology
Annual review of plant biology 生物-植物科学
CiteScore
40.40
自引率
0.40%
发文量
29
期刊介绍: The Annual Review of Plant Biology is a peer-reviewed scientific journal published by Annual Reviews. It has been in publication since 1950 and covers significant developments in the field of plant biology, including biochemistry and biosynthesis, genetics, genomics and molecular biology, cell differentiation, tissue, organ and whole plant events, acclimation and adaptation, and methods and model organisms. The current volume of this journal has been converted from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license.
期刊最新文献
Adaptation and the Geographic Spread of Crop Species. Environmental Control of Hypocotyl Elongation. Plant Cryopreservation: Principles, Applications, and Challenges of Banking Plant Diversity at Ultralow Temperatures. Structure and Function of Auxin Transporters. Structural and Evolutionary Aspects of Plant Endocytosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1