{"title":"The Game of Timing: Circadian Rhythms Intersect with Changing Environments.","authors":"Kanjana Laosuntisuk, Estefania Elorriaga, Colleen J Doherty","doi":"10.1146/annurev-arplant-070522-065329","DOIUrl":null,"url":null,"abstract":"<p><p>Recurring patterns are an integral part of life on Earth. Through evolution or breeding, plants have acquired systems that coordinate with the cyclic patterns driven by Earth's movement through space. The biosystem responses to these physical rhythms result in biological cycles of daily and seasonal activity that feed back into the physical cycles. Signaling networks to coordinate growth and molecular activities with these persistent cycles have been integrated into plant biochemistry. The plant circadian clock is the coordinator of this complex, multiscale, temporal schedule. However, we have detailed knowledge of the circadian clock components and functions in only a few species under controlled conditions. We are just beginning to understand how the clock functions in real-world conditions. This review examines what we know about the circadian clock in diverse plant species, the challenges with extrapolating data from controlled environments, and the need to anticipate how plants will respond to climate change.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":"74 ","pages":"511-538"},"PeriodicalIF":21.3000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of plant biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-arplant-070522-065329","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 3
Abstract
Recurring patterns are an integral part of life on Earth. Through evolution or breeding, plants have acquired systems that coordinate with the cyclic patterns driven by Earth's movement through space. The biosystem responses to these physical rhythms result in biological cycles of daily and seasonal activity that feed back into the physical cycles. Signaling networks to coordinate growth and molecular activities with these persistent cycles have been integrated into plant biochemistry. The plant circadian clock is the coordinator of this complex, multiscale, temporal schedule. However, we have detailed knowledge of the circadian clock components and functions in only a few species under controlled conditions. We are just beginning to understand how the clock functions in real-world conditions. This review examines what we know about the circadian clock in diverse plant species, the challenges with extrapolating data from controlled environments, and the need to anticipate how plants will respond to climate change.
期刊介绍:
The Annual Review of Plant Biology is a peer-reviewed scientific journal published by Annual Reviews. It has been in publication since 1950 and covers significant developments in the field of plant biology, including biochemistry and biosynthesis, genetics, genomics and molecular biology, cell differentiation, tissue, organ and whole plant events, acclimation and adaptation, and methods and model organisms. The current volume of this journal has been converted from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license.