scTenifoldXct: A semi-supervised method for predicting cell-cell interactions and mapping cellular communication graphs.

IF 9 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Cell Systems Pub Date : 2023-04-19 Epub Date: 2023-02-13 DOI:10.1016/j.cels.2023.01.004
Yongjian Yang, Guanxun Li, Yan Zhong, Qian Xu, Yu-Te Lin, Cristhian Roman-Vicharra, Robert S Chapkin, James J Cai
{"title":"scTenifoldXct: A semi-supervised method for predicting cell-cell interactions and mapping cellular communication graphs.","authors":"Yongjian Yang, Guanxun Li, Yan Zhong, Qian Xu, Yu-Te Lin, Cristhian Roman-Vicharra, Robert S Chapkin, James J Cai","doi":"10.1016/j.cels.2023.01.004","DOIUrl":null,"url":null,"abstract":"<p><p>We present scTenifoldXct, a semi-supervised computational tool for detecting ligand-receptor (LR)-mediated cell-cell interactions and mapping cellular communication graphs. Our method is based on manifold alignment, using LR pairs as inter-data correspondences to embed ligand and receptor genes expressed in interacting cells into a unified latent space. Neural networks are employed to minimize the distance between corresponding genes while preserving the structure of gene regression networks. We apply scTenifoldXct to real datasets for testing and demonstrate that our method detects interactions with high consistency compared with other methods. More importantly, scTenifoldXct uncovers weak but biologically relevant interactions overlooked by other methods. We also demonstrate how scTenifoldXct can be used to compare different samples, such as healthy vs. diseased and wild type vs. knockout, to identify differential interactions, thereby revealing functional implications associated with changes in cellular communication status.</p>","PeriodicalId":54348,"journal":{"name":"Cell Systems","volume":"14 4","pages":"302-311.e4"},"PeriodicalIF":9.0000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10121998/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cels.2023.01.004","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We present scTenifoldXct, a semi-supervised computational tool for detecting ligand-receptor (LR)-mediated cell-cell interactions and mapping cellular communication graphs. Our method is based on manifold alignment, using LR pairs as inter-data correspondences to embed ligand and receptor genes expressed in interacting cells into a unified latent space. Neural networks are employed to minimize the distance between corresponding genes while preserving the structure of gene regression networks. We apply scTenifoldXct to real datasets for testing and demonstrate that our method detects interactions with high consistency compared with other methods. More importantly, scTenifoldXct uncovers weak but biologically relevant interactions overlooked by other methods. We also demonstrate how scTenifoldXct can be used to compare different samples, such as healthy vs. diseased and wild type vs. knockout, to identify differential interactions, thereby revealing functional implications associated with changes in cellular communication status.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
scTenifoldXct:预测细胞间相互作用和绘制细胞通讯图的半监督方法
我们介绍的 scTenifoldXct 是一种半监督计算工具,用于检测配体-受体(LR)介导的细胞-细胞相互作用并绘制细胞通讯图谱。我们的方法以流形配准为基础,使用 LR 对作为数据间的对应关系,将相互作用细胞中表达的配体和受体基因嵌入统一的潜在空间。在保留基因回归网络结构的同时,采用神经网络最小化对应基因之间的距离。我们将 scTenifoldXct 应用于真实数据集进行测试,结果表明,与其他方法相比,我们的方法能以较高的一致性检测到相互作用。更重要的是,scTenifoldXct 发现了其他方法忽略的微弱但与生物相关的相互作用。我们还展示了 scTenifoldXct 如何用于比较不同样本,如健康样本与患病样本、野生型样本与基因敲除样本,以识别不同的相互作用,从而揭示与细胞通讯状态变化相关的功能影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Systems
Cell Systems Medicine-Pathology and Forensic Medicine
CiteScore
16.50
自引率
1.10%
发文量
84
审稿时长
42 days
期刊介绍: In 2015, Cell Systems was founded as a platform within Cell Press to showcase innovative research in systems biology. Our primary goal is to investigate complex biological phenomena that cannot be simply explained by basic mathematical principles. While the physical sciences have long successfully tackled such challenges, we have discovered that our most impactful publications often employ quantitative, inference-based methodologies borrowed from the fields of physics, engineering, mathematics, and computer science. We are committed to providing a home for elegant research that addresses fundamental questions in systems biology.
期刊最新文献
pH and buffering capacity: Fundamental yet underappreciated drivers of algal-bacterial interactions What’s driving rhythmic gene expression: Sleep or the clock? Model integration of circadian- and sleep-wake-driven contributions to rhythmic gene expression reveals distinct regulatory principles On knowing a gene: A distributional hypothesis of gene function Acute response to pathogens in the early human placenta at single-cell resolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1