{"title":"Effects of Visual Input Absence on Balance Recovery Responses to Lateral Standing Surface Perturbations in Older and Younger Adults.","authors":"Woohyoung Jeon, James Borrelli, Hao-Yuan Hsiao","doi":"10.1123/jab.2022-0029","DOIUrl":null,"url":null,"abstract":"<p><p>Although the ability to recover balance in the lateral direction has important implications with regard to fall risk in older adults, the effect of visual input on balance recovery in response to lateral perturbation and the effect of age are not well studied. We investigated the effect of visual input on balance recovery response to unpredictable lateral surface perturbations and its age-related changes. Ten younger and 10 older healthy adults were compared during balance recovery trials performed with the eyes open and eyes closed (EC). Compared with younger adults, older adults showed increased electromyography (EMG) peak amplitude of the soleus and gluteus medius, reduced EMG burst duration of the gluteus maximus and medius, and increased body sway (SD of the body's center of mass acceleration) in EC. In addition, older adults exhibited a smaller % increase (EC-eyes open) of the ankle eversion angle, hip abduction torque, EMG burst duration of the fibularis longus, and a greater % increase of body sway. All kinematics, kinetics, and EMG variables were greater in EC compared with eyes open in both groups. In conclusion, the absence of visual input negatively affects the balance recovery mechanism more in older adults compared with younger adults.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":"39 3","pages":"184-192"},"PeriodicalIF":1.1000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1123/jab.2022-0029","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Although the ability to recover balance in the lateral direction has important implications with regard to fall risk in older adults, the effect of visual input on balance recovery in response to lateral perturbation and the effect of age are not well studied. We investigated the effect of visual input on balance recovery response to unpredictable lateral surface perturbations and its age-related changes. Ten younger and 10 older healthy adults were compared during balance recovery trials performed with the eyes open and eyes closed (EC). Compared with younger adults, older adults showed increased electromyography (EMG) peak amplitude of the soleus and gluteus medius, reduced EMG burst duration of the gluteus maximus and medius, and increased body sway (SD of the body's center of mass acceleration) in EC. In addition, older adults exhibited a smaller % increase (EC-eyes open) of the ankle eversion angle, hip abduction torque, EMG burst duration of the fibularis longus, and a greater % increase of body sway. All kinematics, kinetics, and EMG variables were greater in EC compared with eyes open in both groups. In conclusion, the absence of visual input negatively affects the balance recovery mechanism more in older adults compared with younger adults.
期刊介绍:
The mission of the Journal of Applied Biomechanics (JAB) is to disseminate the highest quality peer-reviewed studies that utilize biomechanical strategies to advance the study of human movement. Areas of interest include clinical biomechanics, gait and posture mechanics, musculoskeletal and neuromuscular biomechanics, sport mechanics, and biomechanical modeling. Studies of sport performance that explicitly generalize to broader activities, contribute substantially to fundamental understanding of human motion, or are in a sport that enjoys wide participation, are welcome. Also within the scope of JAB are studies using biomechanical strategies to investigate the structure, control, function, and state (health and disease) of animals.