Peng Liu, Baige Cao, Yang Zhou, Huina Zhang, Congrong Wang
{"title":"Human umbilical cord-derived mesenchymal stem cells alleviate oxidative stress-induced islet impairment via the Nrf2/HO-1 axis.","authors":"Peng Liu, Baige Cao, Yang Zhou, Huina Zhang, Congrong Wang","doi":"10.1093/jmcb/mjad035","DOIUrl":null,"url":null,"abstract":"<p><p>Hyperglycaemia-induced oxidative stress may disrupt insulin secretion and β-cell survival in diabetes mellitus by overproducing reactive oxygen species. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) exhibit antioxidant properties. However, the mechanisms by which hUC-MSCs protect β-cells from high glucose-induced oxidative stress remain underexplored. In this study, we showed that intravenously injected hUC-MSCs engrafted into the injured pancreas and promoted pancreatic β-cell function in a mouse model of type 1 diabetes mellitus. The in vitro study revealed that hUC-MSCs attenuated high glucose-induced oxidative stress and prevented β-cell impairment via the Nrf2/HO-1 signalling pathway. Nrf2 knockdown partially blocked the anti-oxidative effect of hUC-MSCs, resulting in β-cell decompensation in a high-glucose environment. Overall, these findings provide novel insights into how hUC-MSCs protect β-cells from high glucose-induced oxidative stress.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10681279/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jmcb/mjad035","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Hyperglycaemia-induced oxidative stress may disrupt insulin secretion and β-cell survival in diabetes mellitus by overproducing reactive oxygen species. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) exhibit antioxidant properties. However, the mechanisms by which hUC-MSCs protect β-cells from high glucose-induced oxidative stress remain underexplored. In this study, we showed that intravenously injected hUC-MSCs engrafted into the injured pancreas and promoted pancreatic β-cell function in a mouse model of type 1 diabetes mellitus. The in vitro study revealed that hUC-MSCs attenuated high glucose-induced oxidative stress and prevented β-cell impairment via the Nrf2/HO-1 signalling pathway. Nrf2 knockdown partially blocked the anti-oxidative effect of hUC-MSCs, resulting in β-cell decompensation in a high-glucose environment. Overall, these findings provide novel insights into how hUC-MSCs protect β-cells from high glucose-induced oxidative stress.
期刊介绍:
The Journal of Molecular Cell Biology ( JMCB ) is a full open access, peer-reviewed online journal interested in inter-disciplinary studies at the cross-sections between molecular and cell biology as well as other disciplines of life sciences. The broad scope of JMCB reflects the merging of these life science disciplines such as stem cell research, signaling, genetics, epigenetics, genomics, development, immunology, cancer biology, molecular pathogenesis, neuroscience, and systems biology. The journal will publish primary research papers with findings of unusual significance and broad scientific interest. Review articles, letters and commentary on timely issues are also welcome.
JMCB features an outstanding Editorial Board, which will serve as scientific advisors to the journal and provide strategic guidance for the development of the journal. By selecting only the best papers for publication, JMCB will provide a first rate publishing forum for scientists all over the world.