Diadenosine pentaphosphate regulates dendrite growth and number in cultured hippocampal neurons.

IF 3 4区 医学 Q2 NEUROSCIENCES Purinergic Signalling Pub Date : 2024-04-01 Epub Date: 2023-05-29 DOI:10.1007/s11302-023-09944-z
M Diez-Zaera, A Ruiz-Calvo, J I Diaz-Hernandez, A Sebastián-Serrano, P Aivar, B Alvarez-Castelao, J Pintor, M Diaz-Hernandez, M T Miras-Portugal
{"title":"Diadenosine pentaphosphate regulates dendrite growth and number in cultured hippocampal neurons.","authors":"M Diez-Zaera, A Ruiz-Calvo, J I Diaz-Hernandez, A Sebastián-Serrano, P Aivar, B Alvarez-Castelao, J Pintor, M Diaz-Hernandez, M T Miras-Portugal","doi":"10.1007/s11302-023-09944-z","DOIUrl":null,"url":null,"abstract":"<p><p>During the establishment of neuronal circuits, axons and dendrites grow and branch to establish specific synaptic connections. This complex process is highly regulated by positive and negative extracellular cues guiding the axons and dendrites. Our group was pioneer in describing that one of these signals are the extracellular purines. We found that extracellular ATP, through its selective ionotropic P2X7 receptor (P2X7R), negatively regulates axonal growth and branching. Here, we evaluate if other purinergic compounds, such as the diadenosine pentaphosphate (Ap<sub>5</sub>A), may module the dynamics of dendritic or axonal growth and branching in cultured hippocampal neurons. Our results show that Ap<sub>5</sub>A negatively modulates the dendrite's growth and number by inducing transient intracellular calcium increases in the dendrites' growth cone. Interestingly, phenol red, commonly used as a pH indicator in culture media, also blocks the P2X1 receptors, avoided the negative modulation of Ap<sub>5</sub>A on dendrites. Subsequent pharmacological studies using a battery of selective P2X1R antagonists confirmed the involvement of this subunit. In agreement with pharmacological studies, P2X1R overexpression caused a similar reduction in dendritic length and number as that induced by Ap<sub>5</sub>A. This effect was reverted when neurons were co-transfected with the vector expressing the interference RNA for P2X1R. Despite small hairpin RNAs reverting the reduction in the number of dendrites caused by Ap<sub>5</sub>A, it did not avoid the dendritic length decrease induced by the polyphosphate, suggesting, therefore, the involvement of a heteromeric P2X receptor. Our results are indicating that Ap<sub>5</sub>A exerts a negative influence on dendritic growth.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":"115-125"},"PeriodicalIF":3.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10997559/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Purinergic Signalling","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11302-023-09944-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

During the establishment of neuronal circuits, axons and dendrites grow and branch to establish specific synaptic connections. This complex process is highly regulated by positive and negative extracellular cues guiding the axons and dendrites. Our group was pioneer in describing that one of these signals are the extracellular purines. We found that extracellular ATP, through its selective ionotropic P2X7 receptor (P2X7R), negatively regulates axonal growth and branching. Here, we evaluate if other purinergic compounds, such as the diadenosine pentaphosphate (Ap5A), may module the dynamics of dendritic or axonal growth and branching in cultured hippocampal neurons. Our results show that Ap5A negatively modulates the dendrite's growth and number by inducing transient intracellular calcium increases in the dendrites' growth cone. Interestingly, phenol red, commonly used as a pH indicator in culture media, also blocks the P2X1 receptors, avoided the negative modulation of Ap5A on dendrites. Subsequent pharmacological studies using a battery of selective P2X1R antagonists confirmed the involvement of this subunit. In agreement with pharmacological studies, P2X1R overexpression caused a similar reduction in dendritic length and number as that induced by Ap5A. This effect was reverted when neurons were co-transfected with the vector expressing the interference RNA for P2X1R. Despite small hairpin RNAs reverting the reduction in the number of dendrites caused by Ap5A, it did not avoid the dendritic length decrease induced by the polyphosphate, suggesting, therefore, the involvement of a heteromeric P2X receptor. Our results are indicating that Ap5A exerts a negative influence on dendritic growth.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
五磷酸二腺苷调节培养海马神经元树突的生长和数量
在建立神经元回路的过程中,轴突和树突会生长和分支,以建立特定的突触连接。这一复杂的过程受到细胞外正负信号的高度调控,这些信号引导着轴突和树突。我们的研究小组率先描述了这些信号之一是细胞外的嘌呤。我们发现,细胞外 ATP 通过其选择性离子型 P2X7 受体(P2X7R)负性调节轴突生长和分支。在此,我们评估了其他嘌呤能化合物(如五磷酸二腺苷(Ap5A))是否可能对培养的海马神经元树突或轴突生长和分支的动力学产生影响。我们的研究结果表明,Ap5A 通过诱导树突生长锥中的瞬时细胞内钙离子增加,对树突的生长和数量产生负向调节作用。有趣的是,培养基中常用的 pH 指示剂苯酚红也能阻断 P2X1 受体,从而避免了 Ap5A 对树突的负向调节。随后使用一系列选择性 P2X1R 拮抗剂进行的药理学研究证实了该亚基的参与。与药理学研究一致的是,P2X1R 的过表达会导致树突长度和数量的减少,与 Ap5A 诱导的减少相似。当神经元与表达 P2X1R 干扰 RNA 的载体共转染时,这种效应被逆转。尽管小发夹RNA能逆转Ap5A引起的树突数量减少,但并不能避免多聚磷酸盐引起的树突长度减少,这表明有异构P2X受体的参与。我们的研究结果表明,Ap5A 对树突生长有负面影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Purinergic Signalling
Purinergic Signalling 医学-神经科学
CiteScore
6.60
自引率
17.10%
发文量
75
审稿时长
6-12 weeks
期刊介绍: Nucleotides and nucleosides are primitive biological molecules that were utilized early in evolution both as intracellular energy sources and as extracellular signalling molecules. ATP was first identified as a neurotransmitter and later as a co-transmitter with all the established neurotransmitters in both peripheral and central nervous systems. Four subtypes of P1 (adenosine) receptors, 7 subtypes of P2X ion channel receptors and 8 subtypes of P2Y G protein-coupled receptors have currently been identified. Since P2 receptors were first cloned in the early 1990’s, there is clear evidence for the widespread distribution of both P1 and P2 receptor subtypes in neuronal and non-neuronal cells, including glial, immune, bone, muscle, endothelial, epithelial and endocrine cells.
期刊最新文献
Correction to: Preparation and preliminary evaluation of a tritium-labeled allosteric P2X4 receptor antagonist. Machine learning-aided search for ligands of P2Y6 and other P2Y receptors. Purinergic regulation of pulmonary vascular tone. Role of ecto-5'-nucleotidase in bladder function activity and smooth muscle contractility. Unexpected role of microglia and P2Y12 in the induction of and emergence from anesthesia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1