Giti Alizadeh-Moghaddam, Mehdi Nasr-Esfahani, Zahra Rezayatmand, Mahdi Khozaei
{"title":"Genomic markers analysis associated with resistance to <i>Alternaria alternata</i> (fr.) keissler-tomato pathotype, <i>Solanum lycopersicum</i> L.","authors":"Giti Alizadeh-Moghaddam, Mehdi Nasr-Esfahani, Zahra Rezayatmand, Mahdi Khozaei","doi":"10.1270/jsbbs.22003","DOIUrl":null,"url":null,"abstract":"<p><p><i>Alternaria alternata</i>, the causal pathogen of early blight (EB) disease, is one of the most important diseases in tomato, and other solanaceae family. We analyzed 35 tomato genotypes for quantitative/qualitative traits and biomass growth parameters, as well as the extent and structure of genetic variation associated with EB resistance. Phenotypic comparisons displayed significant differences in leaf blade width (24.95%), stem thickness (30.28%), foliage density (18.88%), and plant size (18.89%), with significant positive correlations with EB resistance (0.18-0.75). Correlation analysis showed that mature fruit size, thickness of fruit pericarp, and leaf type were significantly and negatively correlated with EB resistance (up to -0.41). The susceptible tomato seedlings represented significant reductions in biomass parameters. According to ISSR analysis, the highest resolving power (≥0.79) and heterozygosity (≥0.24) values revealed the presence of high genetic variability among the tomato genotypes. Bayesian model-based STRUCTURE analysis assembled the genotypes into 4 (best ΔK = 4) genetic groups. Combined phenotypic and molecular markers proved to be significantly useful for genetic diversity assessment associated with EB disease resistance.</p>","PeriodicalId":9258,"journal":{"name":"Breeding Science","volume":"72 4","pages":"285-296"},"PeriodicalIF":2.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9868332/pdf/","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breeding Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1270/jsbbs.22003","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 4
Abstract
Alternaria alternata, the causal pathogen of early blight (EB) disease, is one of the most important diseases in tomato, and other solanaceae family. We analyzed 35 tomato genotypes for quantitative/qualitative traits and biomass growth parameters, as well as the extent and structure of genetic variation associated with EB resistance. Phenotypic comparisons displayed significant differences in leaf blade width (24.95%), stem thickness (30.28%), foliage density (18.88%), and plant size (18.89%), with significant positive correlations with EB resistance (0.18-0.75). Correlation analysis showed that mature fruit size, thickness of fruit pericarp, and leaf type were significantly and negatively correlated with EB resistance (up to -0.41). The susceptible tomato seedlings represented significant reductions in biomass parameters. According to ISSR analysis, the highest resolving power (≥0.79) and heterozygosity (≥0.24) values revealed the presence of high genetic variability among the tomato genotypes. Bayesian model-based STRUCTURE analysis assembled the genotypes into 4 (best ΔK = 4) genetic groups. Combined phenotypic and molecular markers proved to be significantly useful for genetic diversity assessment associated with EB disease resistance.
期刊介绍:
Breeding Science is published by the Japanese Society of Breeding. Breeding Science publishes research papers, notes and reviews
related to breeding. Research Papers are standard original articles.
Notes report new cultivars, breeding lines, germplasms, genetic
stocks, mapping populations, database, software, and techniques
significant and useful for breeding. Reviews summarize recent and
historical events related breeding.
Manuscripts should be submitted by corresponding author. Corresponding author must have obtained permission from all authors
prior to submission. Correspondence, proofs, and charges of excess page and color figures should be handled by the corresponding author.