{"title":"Local signaling enhances output specificity of bacterial c-di-GMP signaling networks.","authors":"Eike H Junkermeier, Regine Hengge","doi":"10.1093/femsml/uqad026","DOIUrl":null,"url":null,"abstract":"<p><p>For many years the surprising multiplicity, signal input diversity, and output specificity of c-di-GMP signaling proteins has intrigued researchers studying bacterial second messengers. How can several signaling pathways act in parallel to produce specific outputs despite relying on the same diffusible second messenger maintained at a certain global cellular concentration? Such high specificity and flexibility arise from combining modes of local and global c-di-GMP signaling in complex signaling networks. Local c-di-GMP signaling can be experimentally shown by three criteria being met: (i) highly specific knockout phenotypes for particular c-di-GMP-related enzymes, (ii) actual cellular c-di-GMP levels that remain unchanged by such mutations and/or below the K<sub>d</sub>'s of the relevant c-di-GMP-binding effectors, and (iii) direct interactions between the signaling proteins involved. Here, we discuss the rationale behind these criteria and present well-studied examples of local c-di-GMP signaling in <i>Escherichia coli</i> and <i>Pseudomonas</i>. Relatively simple systems just colocalize a local source and/or a local sink for c-di-GMP, i.e. a diguanylate cyclase (DGC) and/or a specific phosphodiesterase (PDE), respectively, with a c-di-GMP-binding effector/target system. More complex systems also make use of regulatory protein interactions, e.g. when a \"trigger PDE\" responds to locally provided c-di-GMP, and thereby serves as a c-di-GMP-sensing effector that directly controls a target's activity, or when a c-di-GMP-binding effector recruits and directly activates its own \"private\" DGC. Finally, we provide an outlook into how cells can combine local and global signaling modes of c-di-GMP and possibly integrate those into other signaling nucleotides networks.</p>","PeriodicalId":74189,"journal":{"name":"microLife","volume":"4 ","pages":"uqad026"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/df/7c/uqad026.PMC10211494.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"microLife","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/femsml/uqad026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
For many years the surprising multiplicity, signal input diversity, and output specificity of c-di-GMP signaling proteins has intrigued researchers studying bacterial second messengers. How can several signaling pathways act in parallel to produce specific outputs despite relying on the same diffusible second messenger maintained at a certain global cellular concentration? Such high specificity and flexibility arise from combining modes of local and global c-di-GMP signaling in complex signaling networks. Local c-di-GMP signaling can be experimentally shown by three criteria being met: (i) highly specific knockout phenotypes for particular c-di-GMP-related enzymes, (ii) actual cellular c-di-GMP levels that remain unchanged by such mutations and/or below the Kd's of the relevant c-di-GMP-binding effectors, and (iii) direct interactions between the signaling proteins involved. Here, we discuss the rationale behind these criteria and present well-studied examples of local c-di-GMP signaling in Escherichia coli and Pseudomonas. Relatively simple systems just colocalize a local source and/or a local sink for c-di-GMP, i.e. a diguanylate cyclase (DGC) and/or a specific phosphodiesterase (PDE), respectively, with a c-di-GMP-binding effector/target system. More complex systems also make use of regulatory protein interactions, e.g. when a "trigger PDE" responds to locally provided c-di-GMP, and thereby serves as a c-di-GMP-sensing effector that directly controls a target's activity, or when a c-di-GMP-binding effector recruits and directly activates its own "private" DGC. Finally, we provide an outlook into how cells can combine local and global signaling modes of c-di-GMP and possibly integrate those into other signaling nucleotides networks.