The role of recognition error in the stability of green-beard genes.

IF 3.4 1区 生物学 Q2 EVOLUTIONARY BIOLOGY Evolution Letters Pub Date : 2023-06-01 DOI:10.1093/evlett/qrad012
Jibeom Choi, Seoeun Lee, Hyun Kim, Junpyo Park
{"title":"The role of recognition error in the stability of green-beard genes.","authors":"Jibeom Choi,&nbsp;Seoeun Lee,&nbsp;Hyun Kim,&nbsp;Junpyo Park","doi":"10.1093/evlett/qrad012","DOIUrl":null,"url":null,"abstract":"<p><p>The empirical examples of the green-beard genes, once a conundrum of evolutionary biology, are accumulating, while theoretical analyses of this topic are occasional compared to those concerning (narrow-sense) kin selection. In particular, the recognition error of the green-beard effect that the cooperator fails to accurately recognize the other cooperators or defectors is readily found in numerous green-beard genes. To our knowledge, however, no model up to date has taken that effect into account. In this article, we investigated the effect of recognition error on the fitness of the green-beard gene. By employing theories of evolutionary games, our mathematical model predicts that the fitness of the green-beard gene is frequency dependent (frequency of the green-beard gene), which was corroborated by experiments performed with yeast <i>FLO1</i>. The experiment also shows that the cells with the green-beard gene (<i>FLO1</i>) are sturdier under severe stress. We conclude that the low recognition error among the cooperators, the higher reward of cooperation, and the higher cost of defection confer an advantage to the green-beard gene under certain conditions, confirmed by numerical simulation as well. Interestingly, we expect that the recognition error to the defectors may promote the cooperator fitness if the cooperator frequency is low and mutual defection is detrimental. Our ternary approach of mathematical analysis, experiments, and simulation lays the groundwork of the standard model for the green-beard gene that can be generalized to other species.</p>","PeriodicalId":48629,"journal":{"name":"Evolution Letters","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b6/6a/qrad012.PMC10210436.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/evlett/qrad012","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The empirical examples of the green-beard genes, once a conundrum of evolutionary biology, are accumulating, while theoretical analyses of this topic are occasional compared to those concerning (narrow-sense) kin selection. In particular, the recognition error of the green-beard effect that the cooperator fails to accurately recognize the other cooperators or defectors is readily found in numerous green-beard genes. To our knowledge, however, no model up to date has taken that effect into account. In this article, we investigated the effect of recognition error on the fitness of the green-beard gene. By employing theories of evolutionary games, our mathematical model predicts that the fitness of the green-beard gene is frequency dependent (frequency of the green-beard gene), which was corroborated by experiments performed with yeast FLO1. The experiment also shows that the cells with the green-beard gene (FLO1) are sturdier under severe stress. We conclude that the low recognition error among the cooperators, the higher reward of cooperation, and the higher cost of defection confer an advantage to the green-beard gene under certain conditions, confirmed by numerical simulation as well. Interestingly, we expect that the recognition error to the defectors may promote the cooperator fitness if the cooperator frequency is low and mutual defection is detrimental. Our ternary approach of mathematical analysis, experiments, and simulation lays the groundwork of the standard model for the green-beard gene that can be generalized to other species.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
识别错误在绿胡子基因稳定性中的作用。
曾经是进化生物学难题的绿胡子基因的实证例子正在积累,而对这一主题的理论分析偶尔会与那些有关(狭义的)亲缘选择的分析进行比较。特别是绿胡子效应的识别错误,即合作者不能准确识别其他合作者或叛逃者,在众多的绿胡子基因中很容易发现。然而,据我们所知,迄今为止还没有模型考虑到这种影响。本文研究了识别误差对绿胡子基因适应度的影响。通过运用进化博弈理论,我们的数学模型预测了绿胡子基因的适应度是频率依赖的(绿胡子基因的频率),这一点在酵母FLO1实验中得到了证实。实验还表明,具有绿须基因(FLO1)的细胞在严重的压力下更坚固。结果表明,在一定条件下,绿胡子基因在低识别误差、高合作回报和高背叛代价的条件下具有优势,数值模拟结果也证实了这一点。有趣的是,我们预期在合作者频率较低且相互背叛是有害的情况下,对叛逃者的识别错误可能会促进合作者的适应度。我们的数学分析、实验和模拟的三元方法为绿胡子基因的标准模型奠定了基础,该模型可以推广到其他物种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Evolution Letters
Evolution Letters EVOLUTIONARY BIOLOGY-
CiteScore
13.00
自引率
2.00%
发文量
35
审稿时长
10 weeks
期刊介绍: Evolution Letters publishes cutting-edge new research in all areas of Evolutionary Biology. Available exclusively online, and entirely open access, Evolution Letters consists of Letters - original pieces of research which form the bulk of papers - and Comments and Opinion - a forum for highlighting timely new research ideas for the evolutionary community.
期刊最新文献
Assessing the role of mitonuclear interactions on mitochondrial function and organismal fitness in natural Drosophila populations Genomic patterns in the dwarf kingfishers of northern Melanesia reveal a mechanistic framework explaining the paradox of the great speciators Unraveling mate choice evolution through indirect genetic effects Insular environment-dependent introgression from an arid-grassland orchid to a wetland orchid on an oceanic island Coordination of care reduces conflict and predation risk in a cooperatively breeding bird
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1