Sándor Csaba Aranyi, Zita Képes, Marianna Nagy, Gábor Opposits, Ildikó Garai, Miklós Káplár, Miklós Emri
{"title":"Topological dissimilarities of hierarchical resting networks in type 2 diabetes mellitus and obesity.","authors":"Sándor Csaba Aranyi, Zita Képes, Marianna Nagy, Gábor Opposits, Ildikó Garai, Miklós Káplár, Miklós Emri","doi":"10.1007/s10827-022-00833-9","DOIUrl":null,"url":null,"abstract":"<p><p>Type 2 diabetes mellitus (T2DM) is reported to cause widespread changes in brain function, leading to cognitive impairments. Research using resting-state functional magnetic resonance imaging data already aims to understand functional changes in complex brain connectivity systems. However, no previous studies with dynamic causal modelling (DCM) tried to investigate large-scale effective connectivity in diabetes. We aimed to examine the differences in large-scale resting state networks in diabetic and obese patients using combined DCM and graph theory methodologies. With the participation of 70 subjects (43 diabetics, 27 obese), we used cross-spectra DCM to estimate connectivity between 36 regions, subdivided into seven resting networks (RSN) commonly recognized in the literature. We assessed group-wise connectivity of T2DM and obesity, as well as group differences, with parametric empirical Bayes and Bayesian model reduction techniques. We analyzed network connectivity globally, between RSNs, and regionally. We found that average connection strength was higher in T2DM globally and between RSNs, as well. On the network level, the salience network shows stronger total within-network connectivity in diabetes (8.07) than in the obese group (4.02). Regionally, we measured the most significant average decrease in the right middle temporal gyrus (-0.013 Hz) and the right inferior parietal lobule (-0.01 Hz) relative to the obese group. In comparison, connectivity increased most notably in the left anterior prefrontal cortex (0.01 Hz) and the medial dorsal thalamus (0.009 Hz). In conclusion, we find the usage of complex analysis of large-scale networks suitable for diabetes instead of focusing on specific changes in brain function.</p>","PeriodicalId":54857,"journal":{"name":"Journal of Computational Neuroscience","volume":"51 1","pages":"71-86"},"PeriodicalIF":1.5000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9840595/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10827-022-00833-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Type 2 diabetes mellitus (T2DM) is reported to cause widespread changes in brain function, leading to cognitive impairments. Research using resting-state functional magnetic resonance imaging data already aims to understand functional changes in complex brain connectivity systems. However, no previous studies with dynamic causal modelling (DCM) tried to investigate large-scale effective connectivity in diabetes. We aimed to examine the differences in large-scale resting state networks in diabetic and obese patients using combined DCM and graph theory methodologies. With the participation of 70 subjects (43 diabetics, 27 obese), we used cross-spectra DCM to estimate connectivity between 36 regions, subdivided into seven resting networks (RSN) commonly recognized in the literature. We assessed group-wise connectivity of T2DM and obesity, as well as group differences, with parametric empirical Bayes and Bayesian model reduction techniques. We analyzed network connectivity globally, between RSNs, and regionally. We found that average connection strength was higher in T2DM globally and between RSNs, as well. On the network level, the salience network shows stronger total within-network connectivity in diabetes (8.07) than in the obese group (4.02). Regionally, we measured the most significant average decrease in the right middle temporal gyrus (-0.013 Hz) and the right inferior parietal lobule (-0.01 Hz) relative to the obese group. In comparison, connectivity increased most notably in the left anterior prefrontal cortex (0.01 Hz) and the medial dorsal thalamus (0.009 Hz). In conclusion, we find the usage of complex analysis of large-scale networks suitable for diabetes instead of focusing on specific changes in brain function.
期刊介绍:
The Journal of Computational Neuroscience provides a forum for papers that fit the interface between computational and experimental work in the neurosciences. The Journal of Computational Neuroscience publishes full length original papers, rapid communications and review articles describing theoretical and experimental work relevant to computations in the brain and nervous system. Papers that combine theoretical and experimental work are especially encouraged. Primarily theoretical papers should deal with issues of obvious relevance to biological nervous systems. Experimental papers should have implications for the computational function of the nervous system, and may report results using any of a variety of approaches including anatomy, electrophysiology, biophysics, imaging, and molecular biology. Papers investigating the physiological mechanisms underlying pathologies of the nervous system, or papers that report novel technologies of interest to researchers in computational neuroscience, including advances in neural data analysis methods yielding insights into the function of the nervous system, are also welcomed (in this case, methodological papers should include an application of the new method, exemplifying the insights that it yields).It is anticipated that all levels of analysis from cognitive to cellular will be represented in the Journal of Computational Neuroscience.