Recent advances of droplet-based microfluidics for engineering artificial cells

IF 2.5 4区 医学 Q3 BIOCHEMICAL RESEARCH METHODS SLAS Technology Pub Date : 2024-04-01 DOI:10.1016/j.slast.2023.05.002
Samantha Fasciano , Shue Wang
{"title":"Recent advances of droplet-based microfluidics for engineering artificial cells","authors":"Samantha Fasciano ,&nbsp;Shue Wang","doi":"10.1016/j.slast.2023.05.002","DOIUrl":null,"url":null,"abstract":"<div><p>Artificial cells, synthetic cells, or minimal cells are microengineered cell-like structures that mimic the biological functions of cells. Artificial cells are typically biological or polymeric membranes where biologically active components, including proteins, genes, and enzymes, are encapsulated. The goal of engineering artificial cells is to build a living cell with the least amount of parts and complexity. Artificial cells hold great potential for several applications, including membrane protein interactions, gene expression, biomaterials, and drug development. It is critical to generate robust, stable artificial cells using high throughput, easy-to-control, and flexible techniques. Recently, droplet-based microfluidic techniques have shown great potential for the synthesis of vesicles and artificial cells. Here, we summarized the recent advances in droplet-based microfluidic techniques for the fabrication of vesicles and artificial cells. We first reviewed the different types of droplet-based microfluidic devices, including flow-focusing, T-junction, and coflowing. Next, we discussed the formation of multi-compartmental vesicles and artificial cells based on droplet-based microfluidics. The applications of artificial cells for studying gene expression dynamics, artificial cell-cell communications, and mechanobiology are highlighted and discussed. Finally, the current challenges and future outlook of droplet-based microfluidic methods for engineering artificial cells are discussed. This review will provide insights into scientific research in synthetic biology, microfluidic devices, membrane interactions, and mechanobiology.</p></div>","PeriodicalId":54248,"journal":{"name":"SLAS Technology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2472630323000341/pdfft?md5=3046460f0dac06435bacb9518b573317&pid=1-s2.0-S2472630323000341-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Technology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472630323000341","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial cells, synthetic cells, or minimal cells are microengineered cell-like structures that mimic the biological functions of cells. Artificial cells are typically biological or polymeric membranes where biologically active components, including proteins, genes, and enzymes, are encapsulated. The goal of engineering artificial cells is to build a living cell with the least amount of parts and complexity. Artificial cells hold great potential for several applications, including membrane protein interactions, gene expression, biomaterials, and drug development. It is critical to generate robust, stable artificial cells using high throughput, easy-to-control, and flexible techniques. Recently, droplet-based microfluidic techniques have shown great potential for the synthesis of vesicles and artificial cells. Here, we summarized the recent advances in droplet-based microfluidic techniques for the fabrication of vesicles and artificial cells. We first reviewed the different types of droplet-based microfluidic devices, including flow-focusing, T-junction, and coflowing. Next, we discussed the formation of multi-compartmental vesicles and artificial cells based on droplet-based microfluidics. The applications of artificial cells for studying gene expression dynamics, artificial cell-cell communications, and mechanobiology are highlighted and discussed. Finally, the current challenges and future outlook of droplet-based microfluidic methods for engineering artificial cells are discussed. This review will provide insights into scientific research in synthetic biology, microfluidic devices, membrane interactions, and mechanobiology.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于液滴的人工细胞工程微流控技术的最新进展
人造细胞、合成细胞或最小细胞是模仿细胞生物功能的微工程细胞样结构。人造细胞通常是生物膜或聚合膜,其中封装了生物活性成分,包括蛋白质、基因和酶。人工细胞工程的目标是用最少的部件和最复杂的结构构建一个活细胞。人工细胞在膜蛋白相互作用、基因表达、生物材料和药物开发等多个应用领域具有巨大潜力。利用高通量、易控制和灵活的技术生成稳健、稳定的人工细胞至关重要。最近,基于液滴的微流控技术在合成囊泡和人工细胞方面显示出巨大潜力。在此,我们总结了基于液滴的微流控技术在制造囊泡和人工细胞方面的最新进展。我们首先回顾了基于液滴的微流体设备的不同类型,包括流聚焦、T 型连接和共流。接下来,我们讨论了基于液滴微流体技术的多室囊泡和人工细胞的形成。重点讨论了人工细胞在研究基因表达动力学、人工细胞-细胞通讯和机械生物学方面的应用。最后,讨论了基于液滴的微流体方法在人工细胞工程中的当前挑战和未来展望。本综述将为合成生物学、微流体设备、膜相互作用和机械生物学领域的科学研究提供深入见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
SLAS Technology
SLAS Technology Computer Science-Computer Science Applications
CiteScore
6.30
自引率
7.40%
发文量
47
审稿时长
106 days
期刊介绍: SLAS Technology emphasizes scientific and technical advances that enable and improve life sciences research and development; drug-delivery; diagnostics; biomedical and molecular imaging; and personalized and precision medicine. This includes high-throughput and other laboratory automation technologies; micro/nanotechnologies; analytical, separation and quantitative techniques; synthetic chemistry and biology; informatics (data analysis, statistics, bio, genomic and chemoinformatics); and more.
期刊最新文献
Management of experimental workflows in robotic cultivation platforms. Application of conjugated polymer nanocomposite materials as biosensors in rehabilitation of ankle joint injuries in martial arts sports. Identification of m6A-related lncRNAs prognostic signature for predicting immunotherapy response in cervical cancer Regional developers’ community accelerates laboratory automation Accelerating covalent binding studies: Direct mass shift measurement with acoustic ejection and TOF-MS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1