Merging Signaling with Structure: Functions and Mechanisms of Plant Glutamate Receptor Ion Channels.

IF 21.3 1区 生物学 Q1 PLANT SCIENCES Annual review of plant biology Pub Date : 2023-05-22 DOI:10.1146/annurev-arplant-070522-033255
Alexander A Simon, Carlos Navarro-Retamal, José A Feijó
{"title":"Merging Signaling with Structure: Functions and Mechanisms of Plant Glutamate Receptor Ion Channels.","authors":"Alexander A Simon,&nbsp;Carlos Navarro-Retamal,&nbsp;José A Feijó","doi":"10.1146/annurev-arplant-070522-033255","DOIUrl":null,"url":null,"abstract":"<p><p>Plant glutamate receptor-like (GLR) genes encode ion channels with demonstrated roles in electrical and calcium (Ca<sup>2+</sup>) signaling. The expansion of the GLR family along the lineage of land plants, culminating in the appearance of a multiclade system among flowering plants, has been a topic of interest since their discovery nearly 25 years ago. GLRs are involved in many physiological processes, from wound signaling to transcriptional regulation to sexual reproduction. Emerging evidence supports the notion that their fundamental functions are conserved among different groups of plants as well. In this review, we update the physiological and genetic evidence for GLRs, establishing their role in signaling and cell-cell communication. Special emphasis is given to the recent discussion of GLRs' atomic structures. Along with functional assays, a structural view of GLRs' molecular organization presents a window for novel hypotheses regarding the molecular mechanisms underpinning signaling associated with the ionic fluxes that GLRs regulate. Newly uncovered transcriptional regulations associated with GLRs-which propose the involvement of genes from all clades of<i>Arabidopsis thaliana</i> in ways not previously observed-are discussed in the context of the broader impacts of GLR activity. We posit that the functions of GLRs in plant biology are probably much broader than anticipated, but describing their widespread involvement will only be possible with (<i>a</i>) a comprehensive understanding of the channel's properties at the molecular and structural levels, including protein-protein interactions, and (<i>b</i>) the design of new genetic approaches to explore stress and pathogen responses where precise transcriptional control may result in more precise testable hypotheses to overcome their apparent functional redundancies.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":null,"pages":null},"PeriodicalIF":21.3000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of plant biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-arplant-070522-033255","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 4

Abstract

Plant glutamate receptor-like (GLR) genes encode ion channels with demonstrated roles in electrical and calcium (Ca2+) signaling. The expansion of the GLR family along the lineage of land plants, culminating in the appearance of a multiclade system among flowering plants, has been a topic of interest since their discovery nearly 25 years ago. GLRs are involved in many physiological processes, from wound signaling to transcriptional regulation to sexual reproduction. Emerging evidence supports the notion that their fundamental functions are conserved among different groups of plants as well. In this review, we update the physiological and genetic evidence for GLRs, establishing their role in signaling and cell-cell communication. Special emphasis is given to the recent discussion of GLRs' atomic structures. Along with functional assays, a structural view of GLRs' molecular organization presents a window for novel hypotheses regarding the molecular mechanisms underpinning signaling associated with the ionic fluxes that GLRs regulate. Newly uncovered transcriptional regulations associated with GLRs-which propose the involvement of genes from all clades ofArabidopsis thaliana in ways not previously observed-are discussed in the context of the broader impacts of GLR activity. We posit that the functions of GLRs in plant biology are probably much broader than anticipated, but describing their widespread involvement will only be possible with (a) a comprehensive understanding of the channel's properties at the molecular and structural levels, including protein-protein interactions, and (b) the design of new genetic approaches to explore stress and pathogen responses where precise transcriptional control may result in more precise testable hypotheses to overcome their apparent functional redundancies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
信号与结构的融合:植物谷氨酸受体离子通道的功能与机制
植物谷氨酸受体样(GLR)基因编码离子通道,在电和钙(Ca2+)信号传导中发挥作用。GLR家族沿着陆生植物谱系的扩展,最终在开花植物中出现了一个多枝系统,自近25年前发现以来一直是人们感兴趣的话题。glr参与了许多生理过程,从伤口信号到转录调节到有性生殖。新出现的证据支持这样一种观点,即它们的基本功能在不同的植物群体中也是保守的。在这篇综述中,我们更新了glr的生理和遗传证据,确定了它们在信号传导和细胞间通讯中的作用。特别强调了最近对glr原子结构的讨论。随着功能分析,glr分子组织的结构观点为有关glr调节的离子通量相关信号的分子机制的新假设提供了一个窗口。新发现的与GLR相关的转录调控-提出了来自拟南芥所有分支的基因以以前未观察到的方式参与-在GLR活性的更广泛影响的背景下进行了讨论。我们认为glr在植物生物学中的功能可能比预期的要广泛得多,但要描述它们的广泛参与,只有在以下情况下才有可能:(a)在分子和结构水平上全面了解通道的特性,包括蛋白质-蛋白质相互作用;(b)设计新的遗传方法来探索应激和病原体反应,其中精确的转录控制可能导致更精确的可测试假设,以克服其明显的功能冗余。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual review of plant biology
Annual review of plant biology 生物-植物科学
CiteScore
40.40
自引率
0.40%
发文量
29
期刊介绍: The Annual Review of Plant Biology is a peer-reviewed scientific journal published by Annual Reviews. It has been in publication since 1950 and covers significant developments in the field of plant biology, including biochemistry and biosynthesis, genetics, genomics and molecular biology, cell differentiation, tissue, organ and whole plant events, acclimation and adaptation, and methods and model organisms. The current volume of this journal has been converted from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license.
期刊最新文献
Adaptation and the Geographic Spread of Crop Species. Environmental Control of Hypocotyl Elongation. Plant Cryopreservation: Principles, Applications, and Challenges of Banking Plant Diversity at Ultralow Temperatures. Structure and Function of Auxin Transporters. Structural and Evolutionary Aspects of Plant Endocytosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1