Assessing measurement invariance with moderated nonlinear factor analysis using the R package OpenMx.

IF 7.6 1区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY Psychological methods Pub Date : 2024-04-01 Epub Date: 2022-07-04 DOI:10.1037/met0000501
Laura Kolbe, Dylan Molenaar, Suzanne Jak, Terrence D Jorgensen
{"title":"Assessing measurement invariance with moderated nonlinear factor analysis using the R package OpenMx.","authors":"Laura Kolbe, Dylan Molenaar, Suzanne Jak, Terrence D Jorgensen","doi":"10.1037/met0000501","DOIUrl":null,"url":null,"abstract":"<p><p>Assessing measurement invariance is an important step in establishing a meaningful comparison of measurements of a latent construct across individuals or groups. Most recently, moderated nonlinear factor analysis (MNLFA) has been proposed as a method to assess measurement invariance. In MNLFA models, measurement invariance is examined in a single-group confirmatory factor analysis model by means of parameter moderation. The advantages of MNLFA over other methods is that it (a) accommodates the assessment of measurement invariance across multiple continuous and categorical background variables and (b) accounts for heteroskedasticity by allowing the factor and residual variances to differ as a function of the background variables. In this article, we aim to make MNLFA more accessible to researchers without access to commercial structural equation modeling software by demonstrating how this method can be applied with the open-source R package OpenMx. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":"388-406"},"PeriodicalIF":7.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000501","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Assessing measurement invariance is an important step in establishing a meaningful comparison of measurements of a latent construct across individuals or groups. Most recently, moderated nonlinear factor analysis (MNLFA) has been proposed as a method to assess measurement invariance. In MNLFA models, measurement invariance is examined in a single-group confirmatory factor analysis model by means of parameter moderation. The advantages of MNLFA over other methods is that it (a) accommodates the assessment of measurement invariance across multiple continuous and categorical background variables and (b) accounts for heteroskedasticity by allowing the factor and residual variances to differ as a function of the background variables. In this article, we aim to make MNLFA more accessible to researchers without access to commercial structural equation modeling software by demonstrating how this method can be applied with the open-source R package OpenMx. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 R 软件包 OpenMx 进行调节非线性因子分析,评估测量不变性。
评估测量不变性是对不同个体或群体的潜在构念的测量结果进行有意义比较的重要步骤。最近,有人提出了调节性非线性因子分析(MNLFA)作为一种评估测量不变量的方法。在 MNLFA 模型中,测量不变性是通过参数调节的方式在单组确认性因子分析模型中进行检验的。与其他方法相比,MNLFA 的优点在于:(a) 可以评估多个连续和分类背景变量的测量不变量;(b) 允许因子方差和残差方差随背景变量的变化而变化,从而考虑到异方差。在本文中,我们旨在通过演示如何使用开源 R 软件包 OpenMx 来应用 MNLFA,使无法使用商业结构方程建模软件的研究人员更容易使用 MNLFA。(PsycInfo Database Record (c) 2024 APA, 版权所有)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Psychological methods
Psychological methods PSYCHOLOGY, MULTIDISCIPLINARY-
CiteScore
13.10
自引率
7.10%
发文量
159
期刊介绍: Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.
期刊最新文献
Simulation studies for methodological research in psychology: A standardized template for planning, preregistration, and reporting. How to conduct an integrative mixed methods meta-analysis: A tutorial for the systematic review of quantitative and qualitative evidence. Updated guidelines on selecting an intraclass correlation coefficient for interrater reliability, with applications to incomplete observational designs. Data-driven covariate selection for confounding adjustment by focusing on the stability of the effect estimator. Estimating and investigating multiple constructs multiple indicators social relations models with and without roles within the traditional structural equation modeling framework: A tutorial.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1