An improved multi-source domain adaptation network for inter-subject mental fatigue detection based on DANN.

IF 1.3 4区 医学 Q4 ENGINEERING, BIOMEDICAL Biomedical Engineering / Biomedizinische Technik Pub Date : 2023-06-27 DOI:10.1515/bmt-2022-0354
Kun Chen, Zhiyong Liu, Zhilei Li, Quan Liu, Qingsong Ai, Li Ma
{"title":"An improved multi-source domain adaptation network for inter-subject mental fatigue detection based on DANN.","authors":"Kun Chen,&nbsp;Zhiyong Liu,&nbsp;Zhilei Li,&nbsp;Quan Liu,&nbsp;Qingsong Ai,&nbsp;Li Ma","doi":"10.1515/bmt-2022-0354","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Electroencephalogram (EEG) is often used to detect mental fatigue because of its real-time characteristic and objective nature. However, because of the individual variability of EEG among different individuals, tedious and time-consuming calibration sessions are needed.</p><p><strong>Methods: </strong>Therefore, we propose a multi-source domain adaptation network for inter-subject mental fatigue detection named FLDANN, which is short for focal loss based domain-adversarial training of neural network. As for mental state feature extraction, power spectrum density is extracted based on the Welch method from four sub-bands of EEG signals. The features of the source domain and target domain are fed into the FLDANN network. The contributions of FLDANN include: (1) It uses the idea of adversarial to reduce feature differences between the source and target domain. (2) A loss function named focal loss is used to assign weights to source and target domain samples.</p><p><strong>Results: </strong>The experiment result shows that when the number of the source domains increases, the classification accuracy of domain-adversarial training of neural network (DANN) gradually decreases and finally tends to be stable. The proposed method achieves an accuracy of 84.10% ± 8.75% on the SEED-VIG dataset and 65.42% ± 7.47% on the self-designed dataset. In addition, the proposed method is compared with other domain adaptation methods and the results show that the proposed method outperforms those state-of-the-art methods.</p><p><strong>Conclusions: </strong>The result proves that the proposed method is able to solve the problem of individual differences across subjects and to solve the problem of low classification performance of multi-source domain transfer learning.</p>","PeriodicalId":8900,"journal":{"name":"Biomedical Engineering / Biomedizinische Technik","volume":"68 3","pages":"317-327"},"PeriodicalIF":1.3000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering / Biomedizinische Technik","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/bmt-2022-0354","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Electroencephalogram (EEG) is often used to detect mental fatigue because of its real-time characteristic and objective nature. However, because of the individual variability of EEG among different individuals, tedious and time-consuming calibration sessions are needed.

Methods: Therefore, we propose a multi-source domain adaptation network for inter-subject mental fatigue detection named FLDANN, which is short for focal loss based domain-adversarial training of neural network. As for mental state feature extraction, power spectrum density is extracted based on the Welch method from four sub-bands of EEG signals. The features of the source domain and target domain are fed into the FLDANN network. The contributions of FLDANN include: (1) It uses the idea of adversarial to reduce feature differences between the source and target domain. (2) A loss function named focal loss is used to assign weights to source and target domain samples.

Results: The experiment result shows that when the number of the source domains increases, the classification accuracy of domain-adversarial training of neural network (DANN) gradually decreases and finally tends to be stable. The proposed method achieves an accuracy of 84.10% ± 8.75% on the SEED-VIG dataset and 65.42% ± 7.47% on the self-designed dataset. In addition, the proposed method is compared with other domain adaptation methods and the results show that the proposed method outperforms those state-of-the-art methods.

Conclusions: The result proves that the proposed method is able to solve the problem of individual differences across subjects and to solve the problem of low classification performance of multi-source domain transfer learning.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种改进的基于DANN的多源域自适应网络主体间精神疲劳检测方法。
目的:脑电图(EEG)具有实时性和客观性,常用于检测精神疲劳。然而,由于脑电图在不同个体之间的个体差异,需要进行繁琐且耗时的校准。为此,我们提出了一种多源域自适应神经网络,称为FLDANN,即基于焦点损失的神经网络域对抗训练。在精神状态特征提取方面,基于Welch方法从脑电信号的四个子带提取功率谱密度。将源域和目标域的特征输入到FLDANN网络中。FLDANN的贡献包括:(1)它使用对抗的思想来减少源域和目标域之间的特征差异。(2)利用焦点损失函数对源域和目标域样本进行权重分配。结果:实验结果表明,随着源域数量的增加,神经网络域对抗训练(DANN)的分类准确率逐渐降低,最终趋于稳定。该方法在SEED-VIG数据集上的准确率为84.10%±8.75%,在自设计数据集上的准确率为65.42%±7.47%。此外,将所提方法与其他领域自适应方法进行了比较,结果表明所提方法优于现有方法。结论:实验结果证明,所提出的方法能够解决学科间的个体差异问题,解决多源领域迁移学习分类性能低的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.50
自引率
5.90%
发文量
58
审稿时长
2-3 weeks
期刊介绍: Biomedical Engineering / Biomedizinische Technik (BMT) is a high-quality forum for the exchange of knowledge in the fields of biomedical engineering, medical information technology and biotechnology/bioengineering. As an established journal with a tradition of more than 60 years, BMT addresses engineers, natural scientists, and clinicians working in research, industry, or clinical practice.
期刊最新文献
Evaluation of the RF depositions at 3T in routine clinical scans with respect to the SAR safety to improve efficiency of MRI utilization Comparative evaluation of volumetry estimation from plain and contrast enhanced computed tomography liver images Sparse-view CT reconstruction based on group-based sparse representation using weighted guided image filtering Actuators and transmission mechanisms in rehabilitation lower limb exoskeletons: a review Abstracts of the 2023 Annual Meeting of the Austrian Society for Biomedical Engineering (ÖGBMT)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1