Bayesian penalty methods for evaluating measurement invariance in moderated nonlinear factor analysis.

IF 7.6 1区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY Psychological methods Pub Date : 2023-06-08 DOI:10.1037/met0000552
Holger Brandt, Siyuan Marco Chen, Daniel J Bauer
{"title":"Bayesian penalty methods for evaluating measurement invariance in moderated nonlinear factor analysis.","authors":"Holger Brandt,&nbsp;Siyuan Marco Chen,&nbsp;Daniel J Bauer","doi":"10.1037/met0000552","DOIUrl":null,"url":null,"abstract":"<p><p>Measurement invariance (MI) is one of the main psychometric requirements for analyses that focus on potentially heterogeneous populations. MI allows researchers to compare latent factor scores across persons from different subgroups, whereas if a measure is not invariant across all items and persons then such comparisons may be misleading. If full MI does not hold further testing may identify problematic items showing differential item functioning (DIF). Most methods developed to test DIF focused on simple scenarios often with comparisons across two groups. In practical applications, this is an oversimplification if many grouping variables (e.g., gender, race) or continuous covariates (e.g., age) exist that might influence the measurement properties of items; these variables are often correlated, making traditional tests that consider each variable separately less useful. Here, we propose the application of Bayesian Moderated Nonlinear Factor Analysis to overcome limitations of traditional approaches to detect DIF. We investigate how modern Bayesian shrinkage priors can be used to identify DIF items in situations with many groups and continuous covariates. We compare the performance of lasso-type, spike-and-slab, and global-local shrinkage priors (e.g., horseshoe) to standard normal and small variance priors. Results indicate that spike-and-slab and lasso priors outperform the other priors. Horseshoe priors provide slightly lower power compared to lasso and spike-and-slab priors. Small variance priors result in very low power to detect DIF with sample sizes below 800, and normal priors may produce severely inflated type I error rates. We illustrate the approach with data from the PISA 2018 study. (PsycInfo Database Record (c) 2023 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000552","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Measurement invariance (MI) is one of the main psychometric requirements for analyses that focus on potentially heterogeneous populations. MI allows researchers to compare latent factor scores across persons from different subgroups, whereas if a measure is not invariant across all items and persons then such comparisons may be misleading. If full MI does not hold further testing may identify problematic items showing differential item functioning (DIF). Most methods developed to test DIF focused on simple scenarios often with comparisons across two groups. In practical applications, this is an oversimplification if many grouping variables (e.g., gender, race) or continuous covariates (e.g., age) exist that might influence the measurement properties of items; these variables are often correlated, making traditional tests that consider each variable separately less useful. Here, we propose the application of Bayesian Moderated Nonlinear Factor Analysis to overcome limitations of traditional approaches to detect DIF. We investigate how modern Bayesian shrinkage priors can be used to identify DIF items in situations with many groups and continuous covariates. We compare the performance of lasso-type, spike-and-slab, and global-local shrinkage priors (e.g., horseshoe) to standard normal and small variance priors. Results indicate that spike-and-slab and lasso priors outperform the other priors. Horseshoe priors provide slightly lower power compared to lasso and spike-and-slab priors. Small variance priors result in very low power to detect DIF with sample sizes below 800, and normal priors may produce severely inflated type I error rates. We illustrate the approach with data from the PISA 2018 study. (PsycInfo Database Record (c) 2023 APA, all rights reserved).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有调节非线性因子分析中评价测量不变性的贝叶斯惩罚方法。
测量不变性(MI)是关注潜在异质人群分析的主要心理测量要求之一。MI允许研究人员比较来自不同亚组的人的潜在因素得分,然而,如果一个测量不是在所有项目和人之间不变,那么这种比较可能会产生误导。如果完整的MI不能保持进一步的测试可能会发现有问题的项目显示差异项目功能(DIF)。大多数测试DIF的方法都集中在简单的场景上,通常是在两组之间进行比较。在实际应用中,如果存在可能影响项目测量属性的许多分组变量(例如,性别、种族)或连续协变量(例如,年龄),则这是一种过度简化;这些变量通常是相关的,使得单独考虑每个变量的传统测试不那么有用。在此,我们提出应用贝叶斯调节非线性因子分析来克服传统方法检测DIF的局限性。我们研究了现代贝叶斯收缩先验如何用于识别具有许多组和连续协变量的情况下的DIF项目。我们比较了套索型、尖钉-板和全局-局部收缩先验(例如马蹄形)与标准正态和小方差先验的性能。结果表明,钉板先验和套索先验优于其他先验。与套索和尖钉板相比,马蹄形先验提供稍低的功率。小方差先验导致在样本量低于800的情况下检测DIF的功率非常低,而正常先验可能会产生严重膨胀的I型错误率。我们用2018年PISA研究的数据来说明这种方法。(PsycInfo数据库记录(c) 2023 APA,版权所有)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Psychological methods
Psychological methods PSYCHOLOGY, MULTIDISCIPLINARY-
CiteScore
13.10
自引率
7.10%
发文量
159
期刊介绍: Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.
期刊最新文献
Simulation studies for methodological research in psychology: A standardized template for planning, preregistration, and reporting. Item response theory-based continuous test norming. Comments on the measurement of effect sizes for indirect effects in Bayesian analysis of variance. Lagged multidimensional recurrence quantification analysis for determining leader-follower relationships within multidimensional time series. The potential of preregistration in psychology: Assessing preregistration producibility and preregistration-study consistency.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1